Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_22_1_a3, author = {Maryna G. Drushlyak and Tetyana D. Lukashova and Fedir M. Lyman}, title = {Generalized norms of groups}, journal = {Algebra and discrete mathematics}, pages = {48--81}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a3/} }
Maryna G. Drushlyak; Tetyana D. Lukashova; Fedir M. Lyman. Generalized norms of groups. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 48-81. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a3/
[1] R. Dedekind, “Uber Gruppen, deren sammtliche Teiler Normalteiler sind”, Math. Ann., 48 (1897), 548–561 | DOI | MR | Zbl
[2] R. Baer, “Sitnation der Untergruppen und Structur der Gruppe”, S.-B. Heidelberg. Akad., 2 (1933), 12–17
[3] R. Baer, “Der Kern, eine Charakteristische Untergruppe”, Comp. Math., 1 (1934), 254–283 | MR
[4] R. Baer, “Gruppen mit hamiltonschen Kern”, Compositio Math., 2 (1935), 241–246 | MR
[5] R. Baer, “Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung”, Compositio Math., 2 (1935), 247–249 | MR
[6] R. Baer, “Gruppen mit vom Zentrum wesetlich verschiedenem Kern und abelische Factorgruppe nach dem kern”, Compositio Math., 4 (1937), 1–77 | MR
[7] R. Baer, “Almost Hamiltonian groups”, Compositio Math., 6 (1939), 382–406 | MR
[8] R. Baer, “Groups with abelian norm quotient group”, Amer. J. Math., 61 (1939), 700–708 | DOI | MR
[9] R. Baer, “Nilpotent groups and their generalizations”, Trans. Amer. Math. Soc., 47 (1940), 393–434 | DOI | MR
[10] R. Baer, “Norm and hypernorm”, Publ. Math., 4 (1956), 347–350 | MR | Zbl
[11] L. Wos, “On commutative prime power subgroups of the norm”, Ill. J. Math., 2 (1958), 271–284 | MR | Zbl
[12] E. Schenkman, “On Norm of a Group”, Ill. J. Math., 4 (1960), 150–152 | MR | Zbl
[13] J. Evan, “Permutable diagonal-type subgroups of $G\times H$”, Glasgow Math. J., 45 (2003), 73–77 | DOI | MR | Zbl
[14] R. A. Bryce, J. Cossy, “A note on Hamiltonian 2-groups”, Rend. Sem. Mat. Univ. Padova, 86 (1991), 175–182 | MR | Zbl
[15] R. A. Bryce, “The Subgroups of Baer and Hughes”, Arch. Math., 61 (1993), 305–312 | DOI | MR | Zbl
[16] R. A. Bryce, L. J. Rylands, “A note on groups with non-central norm”, Glasgow Math. J., 36 (1994), 37–43 | DOI | MR | Zbl
[17] R. A. Bryce, J. Cossy, “The Series of Norms in a Soluble $p$-Group”, Bull. London Math. Soc., 29:2 (1997), 165–172 | DOI | MR | Zbl
[18] R. A. Bryce, J. Cossey, “A Note on Groups with Hamiltonian Quationts”, Rend. Sem. Mat. Univ. Padova, 100 (1998), 1–11 | MR | Zbl
[19] J. C. Beidleman, H. Heineken, M. Newell, “Centre and norm”, Bull. Austral. Math. Soc., 69 (2004), 457–464 | DOI | MR | Zbl
[20] X. Guo, X. H. Zhang, “On the Norm and Wielandt Series in Finite Groups”, Algebra Colloq., 19 (2012), 411–426 | DOI | MR | Zbl
[21] B. Brewster, A. Martinez-Pastor, M. D. Perez-Ramos, “Embedding properties in direct products”, Groups (St. Andrews), 1 (2005), 246–256 | MR
[22] N. Gavioli, L. Legarreta, C. Sica, M. Tota, “On the number of conjugacy classes of normalisers in a finite $p$-groups”, Bull. Aust. Math. Soc., 73 (2005), 219–230 | DOI | MR
[23] F. Russo, “A note on the Quasicentre of a Group”, International Journal of Algebra, 2:7 (2008), 301–313 | MR | Zbl
[24] I. V. Lemeshev, “On norm and center of finite group”, Classes of groups, algebras and their applications, International Algebraic Conference (Gomel 2007), 99–100
[25] J. Wang, X. Guo, “On the norm of finite groups”, Algebra Colloquium, 14:4 (2007), 605–612 | DOI | MR | Zbl
[26] J. X. Wang, X. J. Guo, “Finite groups with its power automorphism groups having small indices”, Acta Mathematica Sinica, English Series, 25:7 (2009), 1097–1108 | DOI | MR | Zbl
[27] J. Smith, “Groups in which every subgroup of the norm is normal”, The XXIXth Ohio State-Denison Mathematics Conference (Columbus, Ohio 2008), 35 pp.
[28] F. Russo, “The generalized commutativity degree in finite group”, Acta Universitatis Apulensis, 18 (2009), 161–167 | MR | Zbl
[29] R. Baer, “Groups with preassigned central and central quotient group”, Transactions of the American Mathematical Society, 44 (1938), 387–412 | DOI | MR
[30] Ya. Berkovich, “Alternate proof of the Reinold Baer theorem on 2-groups with nonabelian norm”, Glasnik Matematicki, 47:1 (2012), 149–152 | DOI | MR | Zbl
[31] G. A. Miller, “Subgroups transformed according to a group of prime order”, Proceedings of the National Academy of Sciences of the United States of America, 29 (1943), 311–314 | DOI | MR | Zbl
[32] I. Ya. Subbotin, “On groups with invariator condition”, Subgroup characterization of groups, Math. Inst. AS USSR, K., 1982, 99–109 | MR
[33] I. Ya. Subbotin, N. F. Kuzennyi, “Soluble groups with invariator condition for non-Abelian normal subgroups”, Izvestiya VUZ. Matematika, 10 (1987), 68–70 | MR | Zbl
[34] W. R. Scott, Group theory, Englewood Gliffs, 1964 | MR | Zbl
[35] M. De Falco, F. De Giovanni, C. Musella, “Groups with decomposable set of quasinormal subgroups”, Serdica Math. J., 27 (2001), 137–142 | MR | Zbl
[36] V. V. Kirichenko, L. A. Kurdachenko, “On some developments in investigation of groups with prescribed properties of generalized normal subgroups”, Algebra and Discrete Mathematics, 9:1 (2010), 41–71 | MR
[37] F. Giovanni, G. Vincenzi, “Pronormality in infinite groups”, Math. Proc. of the Royal Irish Academy, 100:2 (2000), 189–203 | MR
[38] E. Romano, G. Vincenzi, “Pronormality in generalized FC-groups”, Bull. Aust. Math. Soc., 83:2 (2011), 220–230 | MR | Zbl
[39] J. Smith, “Groups with a chain of normalizers”, The XXVIIth Ohio State-Denison Mathematics Conference (Columbus, Ohio 2004), 45 | MR
[40] H. Bell, F. Guzman, L.-C. Kappe, “Ring analogues of Baer`s norm and P.Hall`s margins”, Arch. Math., 55 (1990), 342–354 | DOI | MR | Zbl
[41] M. R. Dixon, L. A. Kurdachenko, J. Otal, “Linear groups with finite dimensional orbits”, Proc. Ischia Group Theory, 2010, 131–145 | MR
[42] R. Baer, “Group Elements of Prime Power Index”, Trans. Amer. Math. Soc., 75:1 (1953), 20–47 | DOI | MR | Zbl
[43] B. Huppert, “Zur Theorie der Formationen”, Arch. Math., 19 (1968), 561–674 | DOI | MR
[44] L. A. Shemetkov, A. N. Skiba, Formations of algebraic structures, Nauka, M., 1989
[45] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992 | MR
[46] V. I. Murashka, “On one generalization of Baer's theorems about hypercentre and nilpotent residual”, Problems of Physics, Mathematics and Technics, 3:16 (2013), 84–88 | Zbl
[47] W. Kappe, “Die A-Norm einer Gruppe”, Ill. J. Math., 5:2 (1961), 187–197 | MR | Zbl
[48] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, Ill. J. Math., 6 (1942), 87–97 | MR | Zbl
[49] A. G. Kurosh, Theory of Groups, Nauka, M., 1967
[50] W. Kappe, “Gruppentheoretische Eigenschaften und charakreristische Untergruppen”, Arch. Math., 13:1 (1962), 38–48 | DOI | MR | Zbl
[51] W. Kappe, “Properties of Groups Related to the Second Center”, Math. Zeitschr., 101 (1967), 356–368 | DOI | MR | Zbl
[52] W. Kappe, “E-Normen Endlicher Gruppe”, Arch. Math., 19 (1968), 256–264 | DOI | MR | Zbl
[53] W. Gashutz, “Uber die $\Phi$-Untergruppe endlicher Gruppen”, Mat. Z., 58:5 (1953), 160–170 | DOI | MR
[54] H. Wielandt, “Uber der Normalisator der Subnormalen Untergruppen”, Mat. Z., 69:5 (1958), 463–465 | DOI | MR | Zbl
[55] D. J. S. Robinson, Course in the Theory of Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | Zbl
[56] D. J. S. Robinson, “On the theory of subnormal subgroups”, Math. Z., 89 (1965), 30–51 | DOI | MR | Zbl
[57] J. E. Roseblade, “On certain subnormal coalition classes”, J. Algebra, 1 (1964), 132–138 | DOI | MR | Zbl
[58] J. Cossy, “The Wielandt subgroup of a polycyclic group”, Glasgow Math. J., 33 (1991), 231–234 | DOI | MR
[59] O. H. Kegel, “Uber den Normalisator von subnormalen und erreichbaren Untergruppen”, Math. Ann., 163 (1966), 248–258 | DOI | MR | Zbl
[60] R. Bryce, J. Cossy, “The Wielandt subgroup of a finite soluble group”, J. London. Math. Soc., 40:2 (1989), 244–256 | DOI | MR | Zbl
[61] R. A. Bryce, J. Cossey, E. A. Ormerod, “A note on $p$-Groups with power automorphisms”, Glasgow Math. J., 34:3 (1992), 327–332 | DOI | MR | Zbl
[62] R. A. Bryce, “Subgroups like Wielandt's in Finite Soluble Groups”, Math. Proc. of the Cambridge Philosophical Society, 107:2 (1990), 239–259 | DOI | MR | Zbl
[63] R. Brandl, S. Franciosi, F. Giovanni, “On the Wielandt subgroup of a infinite soluble groups”, Glasgow Math. J., 3:2 (1990), 121–125 | DOI | MR
[64] A. R. Camina, “The Wielandt length of finite groups”, J. Algebra, 15 (1970), 142–148 | DOI | MR | Zbl
[65] C. Casolo, “Soluble groups with finite Wielandt length”, Glasgow Math. J., 31 (1989), 329–334 | DOI | MR | Zbl
[66] C. Casolo, “Wielandt series and defects of subnormal subgroups in finite soluble groups”, Rend. Sem. Mat. Univ. Padova, 87 (1992), 93–104 | MR | Zbl
[67] E. A. Ormerod, “The Wielandt Subgroup of Metacyclic $p$-groups”, Bull. Australian Math. Soc., 42:3 (1990), 499–510 | DOI | MR | Zbl
[68] C. J. T. Wethwrell, “The Wielandt series of metabelian groups”, Bull. Austral. Math. Soc., 67:4 (2003), 267–276 | DOI | MR
[69] C. J. T. Wethwrell, “Soluble groups of small Wielandt length”, Comm. Alg., 32:4 (2004), 1472–1486 | MR
[70] X. Zhang, X. Guo, “On the Wielandt subgroup in a $p$-group of maximal class”, Chinese Annals of Mathematics, Series B, 33:1 (2012), 83–90 | DOI | MR
[71] X. Guo, X. Zhang, “On the Norm and Wielandt Series in Finite Groups”, Algebra Colloq., 19:3 (2012), 411–426 | DOI | MR | Zbl
[72] D. J. S. Robinson, “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 60 (1964), 21–38 | DOI | MR | Zbl
[73] J. C. Beidleman, M. R. Dixon, D. J. S. Robinson, “The generalized Wielandt subgroup of a group”, Canad. J. Math., 47:2 (1995), 246–261 | DOI | MR | Zbl
[74] J. C. Beidleman, M. R. Dixon, D. J. S. Robinson, “The Wielandt Subgroup”, Infinite Groups 94, Berlin–New York, 1995, 23–40
[75] F. Giovanni, S. Fransiosi, “Groups in which every infinite subnormal subgroup is normal”, J. Algebra, 96:2 (1985), 566–580 | DOI | MR | Zbl
[76] C. Franchi, “Subgroups like Wielandt's in Soluble Groups”, Glasgow Math. J., 42 (2000), 67–74 | DOI | MR | Zbl
[77] C. Franchi, “m-Wielandtseries in infinite Groups”, J. Austral. Math. Soc., 70 (2001), 76–87 | DOI | MR | Zbl
[78] F. Mari, F. Giovanni, “Groups with Few Normalizer Subgroups”, Irish. Math. Soc. Bulletin, 56 (2005), 103–113 | MR | Zbl
[79] F. Amin, A. Ali, M. Arif, “On Generalized Wielandt Subgroup”, World Applied Sciences Journal, 30:12 (2014), 1939–1946
[80] Sh. Lia, Zh. Shenb, “On the intersection of the normalizers of derived subgroups of all subgroups of a finite group”, Journal of Algebra, 323:5 (2010), 1349–1357 | DOI | MR
[81] Z. Shen, S. Lia, W. Shi, “On the norm of the derived subgroups of all subgroups of a finite group”, Bull. Iranian. Math. Soc., 40:1 (2014), 281–291 | MR
[82] Zh. Shen, W. Shi, G. Qian, “On norm of the nilpotent residuals of all subgroups of a finite order”, Journal of Algebra, 352:1 (2012), 290–298 | DOI | MR | Zbl
[83] L. Gong, X. Guo, “On the Intersection of the Normalizers of the Nilpotent Residuals of All Subgroups of a Finite Group”, Algebra Colloq., 20:2 (2013), 349–360 | DOI | MR | Zbl
[84] N. Su, Ya. Wang, “On the intersection of normalizers of the $\mathfrak{F}$-residuals of all subgroups of a finite group”, Journal of Algebra, 392:15 (2013), 185–198 | MR | Zbl
[85] X. Chen, W. Guo, “On the $\pi\mathfrak{F}$-norm and the $h\mathfrak{F}$-norm of a finite group”, Journal of Algebra, 405:1 (2014), 213–231 | DOI | MR | Zbl
[86] A. Ballester-Bolinches, J. Cossey, L. Zhang, “Generalised norms in finite soluble groups”, Journal of Algebra, 402:15 (2014), 392–405 | DOI | MR | Zbl
[87] R. Laue, “Kerne von Permutationsdarstellungen der Automorphismengruppe einer endlichen Gruppe”, Archiv der Mathematic, 27:1 (1976), 463–472 | DOI | MR | Zbl
[88] F. M. Lyman, “Groups with invariant non-cyclic subgroups”, Doklady AN USSR, 12 (1967), 1073–1075 | MR
[89] F. M. Lyman, “2-groups with invariant non-cyclic subgroups”, Mathematical Notes, 4:1 (1968), 75–83 | MR
[90] F. M. Lyman, “Non-peridic groups with some systems of invariant subgroups”, Algebra and Logic, 7:4 (1968), 70–86 | MR
[91] F. M. Lyman, “On infinite groups which non-cyclic norm has finite index”, Ukrainian Math. J., 49:5 (1997), 678–684 | MR
[92] T. D. Lukashova, “Locally finite p-groups ($p\neq$2) with non-Abelian norm of non-cyclic subgroups”, Bulletin of University of Kiev, 1 (2001), 43–53 | MR | Zbl
[93] T. D. Lukashova, “On non-cyclic norm in infinite locally finite groups”, Ukrainian Math. J., 54:3 (2002), 342–348 | DOI | MR | Zbl
[94] T. D. Lukashova, “Finite 2-groups with non-Dedekind norm of non-cyclic subgroups”, Proceedings of Francisk Scorina Gomel State University, 6:3 (2000), 139–150
[95] T. D. Lukashova, “Locally finite groups with non-nilpotent norm of non-cyclic subgroups”, Bulletin of Taras Shevchenko National University of Kiev, 3 (2001), 38–42 | MR | Zbl
[96] F. M. Lyman, T. D. Lukashova, “Generalized norms of non-periodic groups”, Proceedings of Francisk Scorina Gomel State University, 19:4 (2003), 62–67 | MR
[97] A. Yu. Ol'shanskii, “An infinite group with subgroups of prime orders”, Mathematics of the USSR-Izvestiya, 44:2 (1980), 309–321 | MR
[98] Z. Shen, W. Shi, J. Zhang, “Finite non-nilpotent generalizations of Hamiltonian groups”, Bull. Korean. Math.Soc., 48:6 (2011), 1147–1155 | DOI | MR | Zbl
[99] Z. Shen, J. Zhang, W. Shi, “On a Generalization of Hamiltonian Groups and a Dualization of PN-Groups”, Communications in Algebra, 41:5 (2013), 1608–1618 | DOI | MR | Zbl
[100] F. M. Lyman, T. D. Lukashova, “On norm of infinite Abelian subgroups in non-periodic groups”, III International Algebraic Conference in Ukraine (Sumy 2001), 205–207
[101] F. M. Lyman, T. D. Lukashova, “On infinite groups with given properties of norm of infinite subgroups”, Ukrainian Math. J., 53 (2001), 625–630 | MR
[102] F. M. Lyman, T. D. Lukashova, “On norm of infinite cyclic subgroups in non-periodic groups”, Bulletin of P. M. Masherov VSU, 4 (2006), 108–111
[103] S. N. Chernikov, “Groups with invariant infinite Abelian subgroups”, Groups with restrictions for subgroups, Naukova dumka, K., 1971, 47–65 | MR
[104] S. N. Chernikov, “Groups with given properties of systems of infinite subgroups”, Ukrainian Math. J., 19:6 (1967), 111–131 | MR
[105] T. D. Lukashova, M. G. Drushlyak, “On norm of cyclic subgroups of non-prime order in non-periodic groups”, Naukovyi chasopys M. P. Dragomanov NPU, 7 (2006), 72–77
[106] T. G. Lelechenko, F. N. Lyman, “Groups with invariant maximal Abelian subgroups of rank of non-prime order”, Subgroup characterization of groups, Math. Inst., K., 1982, 85–92 | MR
[107] F. M. Lyman, T. D. Lukashova, “On infinite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups”, Bulletin of Taras Shevchenko National University of Kiev, 1 (2005), 56–64 | Zbl
[108] T. D. Lukashova, “On norm of Abelian non-cyclic subgroups in infinite locally finite $p$-groups ($p\neq$2)”, Bulletin of Taras Shevchenko National University of Kiev, 3 (2004), 35–39 | Zbl
[109] F. M. Lyman, “$p$-groups, all Abelian non-cyclic subgroups of which are invariant”, Doklady AN USSR, 8 (1968), 696–699 | MR
[110] F. M. Lyman, “Periodic groups, all Abelian non-cyclic subgroups of which are invariant”, Groups with restrictions on subgroups, Naukova dumka, K., 1971, 65–96 | MR
[111] F. M. Lyman, “Non-periodic groups, all Abelian non-cyclic subgroups of which are invariant”, Doklady AN USSR, 1 (1969), 11–13 | MR
[112] M. G. Drushlyak, “Finite $p$-groups ($p\ne 2$) with non-Abelian norm of Abelian non-cyclic subgroups”, Proceedings of Francisk Scorina Gomel State University, 58:1 (2010), 192–197 | Zbl
[113] F. M. Lyman, T. D. Lukashova, M. G. Drushlyak, “Finite 2-groups with non-cyclic center and non-Dedekind norn of Abelian non-cyclic subgroups”, Bulletin of Taras Shevchenko National University of Kiev, 1 (2012), 26–32 | Zbl
[114] F. N. Lyman, T. D. Lukashova, “Infinite locally finite groups with locally nilpotent non-Dedekind norm of Abelian non-cyclic subgroups”, Bulletin of P. M. Masherov VSU, 6:72 (2012), 5–12
[115] M. G. Drushlyak, “On norm of Abelian non-cyclic subgroups in non-periodic groups”, Bulletin of Taras Shevchenko National University of Kiev, 1 (2009), 14–18 | Zbl
[116] F. N. Lyman, M. G. Drushlyak, “On non-periodic groups without free Abelian subgroups of rank 2 with non-Dedekind norm of Abelian non-cyclic subgroups”, Bulletin of University of Dnipropetrovsk, 6 (2011), 83–97
[117] F. N. Lyman, T. D. Lukashova, “On norm of decomposable subgroups in locally finite groups”, Ukrainian Math. J., 67:4 (2015), 480–488 | MR
[118] F. M. Lyman, “Groups, all decomposable subgroups of which are invariant”, Ukrain. Math. J., 22:6 (1970), 725–733 | MR
[119] F. N. Lyman, T. D. Lukashova, “On norm of decomposable subgroups in non-periodic groups”, Ukrain. Math. J., 67:12 (2015), 1679–1689 | MR
[120] G. M. Romalis, N. F. Sesekin, “On metahamiltonian groups I”, Math. Notes of Ural University, 5:3 (1966), 45–49 | MR
[121] N. F. Sesekin, G. M. Romalis, “On metahamiltonian groups II”, Math. Notes of Ural University, 6:5 (1968), 50–53 | MR
[122] G. M. Romalis, N. F. Sesekin, “On metahamiltonian groups III”, Math. Notes of Ural University, 7:3 (1970), 195–199 | MR | Zbl
[123] V. T. Nagrebeckii, “Finite non-nilpotent groups, every non-Abelian subgroups of which is invariant”, Math. Notes of Ural University, 1 (1967), 80–88 | MR | Zbl
[124] A. A. Makhnev, “On finite metahamiltonian groups”, Math. Notes of Ural University, 1 (1976), 60–75 | MR
[125] S. N. Chernikov, Groups with given properties of system of subgroups, Nauka, M., 1980 | Zbl
[126] M. F. Kuzennyi, M. M. Semko, Metahamiltonian groups and their generalizations, Math. Inst. NAS Ukraine, K., 1996
[127] Yu. M. Gorchakov, Groups with finite classes of conjugate elements, Nauka, M., 1978 | Zbl