Indecomposable and irreducible $t$-monomial matrices over commutative rings
Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 11-20
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence.
Keywords:
local ring, similarity, irreducible matrix, canonically $t$-cyclic matrix, defining sequence, representation.
Mots-clés : indecomposable matrix, group
Mots-clés : indecomposable matrix, group
@article{ADM_2016_22_1_a1,
author = {Vitaliy M. Bondarenko and Maria Yu. Bortos and Ruslana F. Dinis and Alexander A. Tylyshchak},
title = {Indecomposable and irreducible $t$-monomial~matrices over commutative rings},
journal = {Algebra and discrete mathematics},
pages = {11--20},
year = {2016},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a1/}
}
TY - JOUR AU - Vitaliy M. Bondarenko AU - Maria Yu. Bortos AU - Ruslana F. Dinis AU - Alexander A. Tylyshchak TI - Indecomposable and irreducible $t$-monomial matrices over commutative rings JO - Algebra and discrete mathematics PY - 2016 SP - 11 EP - 20 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a1/ LA - en ID - ADM_2016_22_1_a1 ER -
%0 Journal Article %A Vitaliy M. Bondarenko %A Maria Yu. Bortos %A Ruslana F. Dinis %A Alexander A. Tylyshchak %T Indecomposable and irreducible $t$-monomial matrices over commutative rings %J Algebra and discrete mathematics %D 2016 %P 11-20 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a1/ %G en %F ADM_2016_22_1_a1
Vitaliy M. Bondarenko; Maria Yu. Bortos; Ruslana F. Dinis; Alexander A. Tylyshchak. Indecomposable and irreducible $t$-monomial matrices over commutative rings. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a1/
[1] V. M. Bondarenko, M. Yu. Bortos, M. Yu. Dinis, A. A. Tylyshchak, “Reducibility and irreducibility of monomial matrices over commutative rings”, Algebra Discrete Math., 16:2 (2013), 171–187 | MR | Zbl
[2] F. R. Gantmaher, The theory of matrices, FIZMATLIT, 2004, 560 pp.
[3] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013, 643 pp. | MR | Zbl
[4] P. M. Gudivok, I. B. Chukhraj, “On the number of indecomposable matrix representations of given degree of a finite $p$-group over commutative local rings of characteristic $p^s$”, Nauk. Visn. Uzhgorod Univ. Ser. Mat. Inform., 5 (2000), 33–40 (Ukrainian) | Zbl