On colouring integers avoiding $t$-AP~distance-sets
Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $t$-AP is a sequence of the form $a,a+d,\ldots, a+(t-1)d$, where $a,d\in \mathbb{Z}$. Given a finite set $X$ and positive integers $d$, $t$, $a_1,a_2,\ldots,a_{t-1}$, define $\nu(X,d) = |\{(x,y):{x,y\in{X}},{y>x}, {y-x=d}\}|$, $(a_1,a_2,\ldots,a_{t-1};d) =$ a collection $X$ s.t. $\nu(X,d\cdot{i})\geq a_i$ for $1\leq i\leq t-1$. In this paper, we investigate the structure of sets with bounded number of pairs with certain gaps. Let $(t-1,t-2,\ldots,1; d)$ be called a $t$-AP distance-set of size at least $t$. A $k$-colouring of integers $1,2,\ldots, n$ is a mapping $\{1,2,\ldots,n\}\rightarrow \{0,1,\ldots,k-1\}$ where $0,1,\ldots,k-1$ are colours. Let $ww(k,t)$ denote the smallest positive integer $n$ such that every $k$-colouring of $1,2,\ldots,n$ contains a monochromatic $t$-AP distance-set for some $d>0$. We conjecture that $ww(2,t)\geq t^2$ and prove the lower bound for most cases. We also generalize the notion of $ww(k,t)$ and prove several lower bounds.
Keywords: distance sets, colouring integers, sets and sequences.
@article{ADM_2016_22_1_a0,
     author = {Tanbir Ahmed},
     title = {On colouring integers avoiding $t${-AP~distance-sets}},
     journal = {Algebra and discrete mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a0/}
}
TY  - JOUR
AU  - Tanbir Ahmed
TI  - On colouring integers avoiding $t$-AP~distance-sets
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 1
EP  - 10
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a0/
LA  - en
ID  - ADM_2016_22_1_a0
ER  - 
%0 Journal Article
%A Tanbir Ahmed
%T On colouring integers avoiding $t$-AP~distance-sets
%J Algebra and discrete mathematics
%D 2016
%P 1-10
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a0/
%G en
%F ADM_2016_22_1_a0
Tanbir Ahmed. On colouring integers avoiding $t$-AP~distance-sets. Algebra and discrete mathematics, Tome 22 (2016) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/ADM_2016_22_1_a0/

[1] B. L. van der Waerden, “Beweis einer Baudetschen Vermutung”, Nieuw Archief voor Wiskunde, 15 (1927), 212–216 | Zbl