Generalizations of semicoprime preradicals
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 214-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article introduces the notions quasi-co-$n$-absorbing preradicals and semi-co-$n$-absorbing preradicals, generalizing the concept of semicoprime preradicals. We study the concepts quasi-co-$n$-absorbing submodules and semi-co-$n$-absorbing submodules and their relations with quasi-co-$n$-absorbing preradicals and semi-co-$n$-absorbing preradicals using the lattice structure of preradicals.
Keywords: lattice, preradical, quasi-co-$n$-absorbing, semi-co-$n$-absorbing.
@article{ADM_2016_21_2_a4,
     author = {Ahmad Yousefian Darani and Hojjat Mostafanasab},
     title = {Generalizations of semicoprime preradicals},
     journal = {Algebra and discrete mathematics},
     pages = {214--238},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a4/}
}
TY  - JOUR
AU  - Ahmad Yousefian Darani
AU  - Hojjat Mostafanasab
TI  - Generalizations of semicoprime preradicals
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 214
EP  - 238
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a4/
LA  - en
ID  - ADM_2016_21_2_a4
ER  - 
%0 Journal Article
%A Ahmad Yousefian Darani
%A Hojjat Mostafanasab
%T Generalizations of semicoprime preradicals
%J Algebra and discrete mathematics
%D 2016
%P 214-238
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a4/
%G en
%F ADM_2016_21_2_a4
Ahmad Yousefian Darani; Hojjat Mostafanasab. Generalizations of semicoprime preradicals. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 214-238. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a4/

[1] D. F. Anderson and A. Badawi, “On $n$-absorbing ideals of commutative rings”, Comm. Algebra, 39 (2011), 1646–1672 | DOI | MR | Zbl

[2] A. Badawi, “On $2$-absorbing ideals of commutative rings”, Bull. Austral. Math. Soc., 75 (2007), 417–429 | DOI | MR | Zbl

[3] A. Badawi and A. Yousefian Darani, “On weakly $2$-absorbing ideals of commutative rings”, Houston J. Math., 39 (2013), 441–452 | MR | Zbl

[4] L. Bican, P. Jambor, T. Kepka and P. Nemec, “Preradicals”, Comment. Math. Univ. Carolina, 15:1 (1974), 75–83 | MR | Zbl

[5] L. Bican, T. Kepka, and P. Nemec, Rings, Modules and Preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[6] A. I. Kashu, “On partial inverse operations in the lattice of submodules”, Bulet. A. Ş. M. Mathematica, 2:69 (2012), 59–73 | MR | Zbl

[7] A. I. Kashu, “On some operations in the lattice of submodules determined by preradicals”, Bull. Acad. Stiinte Repub. Mold. Mat., 2:66 (2011), 5–16 | MR | Zbl

[8] M. Luísa Galvão, “Preradicals of associative algebras and their connections with preradicals of modules”, Modules and Comodules, Trends in Mathematics, Birkhäuser, 2008, 203–225 | Zbl

[9] H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, “On $2$-absorbing primary submodules of modules over commutative rings”, An. Şt. Univ. Ovidius Constanta, 24:1 (2016), 335–351 | MR

[10] H. Mostafanasab and A. Yousefian Darani, Quasi-$n$-absorbing and semi-$n$-absorbing preradicals, submitted

[11] F. Raggi, J. Ríos, S. Gavito, H. Rincón and R. Fernández-Alonso, “Semicoprime preradicals”, J. Algebra Appl., 11:6 (2012), 1250115, 12 pp. | DOI | MR | Zbl

[12] F. Raggi, J. Ríos, H. Rincón and R. Fernández-Alonso, “Basic preradicals and main injective modules”, J. Algebra Appl., 8:1 (2009), 1–16 | DOI | MR | Zbl

[13] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, “Prime and irreducible preradicals”, J. Algebra Appl., 4:4 (2005), 451–466 | DOI | MR | Zbl

[14] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, “Semiprime preradicals”, Comm. Algebra, 37 (2009), 2811–2822 | DOI | MR | Zbl

[15] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, “The lattice structure of preradicals”, Comm. Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl

[16] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, “The lattice structure of preradicals II: partitions”, J. Algebra Appl., 1:2 (2002), 201–214 | DOI | MR | Zbl

[17] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, “The lattice structure of preradicals III: operators”, J. Pure and Applied Algebra, 190 (2004), 251–265 | DOI | MR | Zbl

[18] F. Raggi, J. Ríos and R. Wisbauer, “Coprime preradicals and modules”, J. Pure Appl. Algebra, 200 (2005), 51–69 | DOI | MR | Zbl

[19] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, 217, Springer Verlag, Berlin, 1975 | MR | Zbl

[20] D. K. Tütüncü, and Y. Kuratomi, “On generalized epi-projective modules”, Math. J. Okayama Univ., 52 (2010), 111–122 | MR | Zbl

[21] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[22] A. Yousefian Darani, and H. Mostafanasab, “Co-$2$-absorbing preradicals and submodules”, J. Algebra Appl., 14:7 (2015), 1550113, 23 pp. | DOI | MR | Zbl

[23] A. Yousefian Darani and H. Mostafanasab, “On $2$-absorbing preradicals”, J. Algebra Appl., 14:2 (2015), 1550017, 22 pp. | DOI | MR | Zbl

[24] A. Yousefian Darani and F. Soheilnia, “$2$-absorbing and weakly $2$-absorbing submodules”, Thai J. Math., 9:3 (2011), 577–584 | MR | Zbl

[25] A. Yousefian Darani and F. Soheilnia, “On $n$-absorbing submodules”, Math. Comm., 17 (2012), 547–557 | MR | Zbl