Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 309-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine all isomorphisms between the endomorphism semigroups of free commutative $g$-dimonoids and prove that all automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid are quasi-inner.
Keywords: $g$-dimonoid, free commutative $g$-dimonoid, endomorphism semigroup
Mots-clés : automorphism group.
@article{ADM_2016_21_2_a10,
     author = {Yurii V. Zhuchok},
     title = {Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid},
     journal = {Algebra and discrete mathematics},
     pages = {309--324},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a10/}
}
TY  - JOUR
AU  - Yurii V. Zhuchok
TI  - Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 309
EP  - 324
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a10/
LA  - en
ID  - ADM_2016_21_2_a10
ER  - 
%0 Journal Article
%A Yurii V. Zhuchok
%T Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid
%J Algebra and discrete mathematics
%D 2016
%P 309-324
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a10/
%G en
%F ADM_2016_21_2_a10
Yurii V. Zhuchok. Automorphisms of the endomorphism semigroup of a free commutative $g$-dimonoid. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 309-324. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a10/

[1] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] Pozhidaev A. P., “0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Sib. Math. J., 50:6 (2009), 1070–1080 | DOI | MR | Zbl

[3] Pirashvili T., “Sets with two associative operations”, Cent. Eur. J. Math., 2 (2003), 169–183 | DOI | MR | Zbl

[4] Movsisyan Y., Davidov S., Safaryan Mh., “Construction of free $\mathfrak{g}$-dimonoids”, Algebra and Discrete Math., 18:1 (2014), 138–148 | MR | Zbl

[5] Zhuchok Yul. V., “On one class of algebras”, Algebra and Discrete Math., 18:2 (2014), 306-–320 | MR | Zbl

[6] Zhuchok A. V., Zhuchok Yu. V., “Free commutative g-dimonoids”, Chebyshevskii Sb., 16:3 (2015), 276–284

[7] Loday J.-L., Ronco M. O., “Trialgebras and families of polytopes”, Contemp. Math., 346 (2004), 369–398 | DOI | MR | Zbl

[8] Casas J. M., “Trialgebras and Leibniz 3-algebras”, Boletín de la Sociedad Matematica Mexicana, 12:2 (2006), 165–178 | MR | Zbl

[9] Zhuchok Yu. V., “The endomorphism monoid of a free troid of rank 1”, Algebra Universalis, 2016, to appear | MR

[10] Plotkin B. I., Seven Lectures on the Universal Algebraic Geometry, Preprint, Institute of Mathematics, Hebrew University, 2000

[11] Plotkin B. I., “Algebras with the same (algebraic) geometry”, Proc. of the Steklov Institute of Mathematics, 242 (2003), 176–207 | MR | Zbl

[12] Formanek E., “A question of B. Plotkin about the semigroup of endomorphisms of a free group”, Proc. American Math. Soc., 130 (2001), 935–937 | DOI | MR

[13] Mashevitsky G., Schein B. M., “Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup”, Proc. American Math. Soc., 131:6 (2003), 1655–1660 | DOI | MR

[14] Kanel-Belov A., Berzins A., Lipyanski R., Automorphisms of the semigroup of endomorphisms of free associative algebras, 2005, arXiv: 0512273v3[math.RA] | MR

[15] Mashevitsky G., Schein B. M., Zhitomirski G. I., “Automorphisms of the endomorphism semigroup of a free inverse semigroup”, Commun. in Algebra, 34:10 (2006), 3569–3584 | DOI | MR

[16] Katsov Y., Lipyanski R., Plotkin B. I., “Automorphisms of categories of free modules, free semimodules, and free Lie modules”, Commun. in Algebra, 35:3 (2007), 931–952 | DOI | MR | Zbl

[17] Mashevitzky G., Plotkin B., Plotkin E., “Automorphisms of the category of free Lie algebras”, J. of Algebra, 282 (2004), 490–512 | DOI | MR | Zbl

[18] Mashevitzky G., Plotkin B., Plotkin E., “Automorphisms of categories of free algebras of varieties”, Electronic research announcements of American Math. Soc., 8 (2002), 1–10 | DOI | MR

[19] Zhuchok Yu. V., “Free abelian dimonoids”, Algebra and Discrete Math., 20:2 (2015), 330–342 | MR | Zbl