On a semitopological polycyclic monoid
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 163-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study algebraic structure of the $\lambda$-polycyclic monoid $P_{\lambda}$ and its topologizations. We show that the $\lambda$-polycyclic monoid for an infinite cardinal $\lambda\geqslant 2$ has similar algebraic properties so has the polycyclic monoid $P_n$ with finitely many $n\geqslant 2$ generators. In particular we prove that for every infinite cardinal $\lambda$ the polycyclic monoid $P_{\lambda}$ is a congruence-free combinatorial $0$-bisimple $0$-$E$-unitary inverse semigroup. Also we show that every non-zero element $x$ is an isolated point in $(P_{\lambda},\tau)$ for every Hausdorff topology $\tau$ on $P_{\lambda}$, such that $(P_{\lambda},\tau)$ is a semitopological semigroup, and every locally compact Hausdorff semigroup topology on $P_\lambda$ is discrete. The last statement extends results of the paper [33] obtaining for topological inverse graph semigroups. We describe all feebly compact topologies $\tau$ on $P_{\lambda}$ such that $\left(P_{\lambda},\tau\right)$ is a semitopological semigroup and its Bohr compactification as a topological semigroup. We prove that for every cardinal $\lambda\geqslant 2$ any continuous homomorphism from a topological semigroup $P_\lambda$ into an arbitrary countably compact topological semigroup is annihilating and there exists no a Hausdorff feebly compact topological semigroup which contains $P_{\lambda}$ as a dense subsemigroup.
Keywords: inverse semigroup, bicyclic monoid, polycyclic monoid, free monoid, semigroup of matrix units, topological semigroup, semitopological semigroup, Bohr compactification, embedding, locally compact, countably compact, feebly compact.
@article{ADM_2016_21_2_a1,
     author = {Serhii Bardyla and Oleg Gutik},
     title = {On a semitopological polycyclic monoid},
     journal = {Algebra and discrete mathematics},
     pages = {163--183},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/}
}
TY  - JOUR
AU  - Serhii Bardyla
AU  - Oleg Gutik
TI  - On a semitopological polycyclic monoid
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 163
EP  - 183
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/
LA  - en
ID  - ADM_2016_21_2_a1
ER  - 
%0 Journal Article
%A Serhii Bardyla
%A Oleg Gutik
%T On a semitopological polycyclic monoid
%J Algebra and discrete mathematics
%D 2016
%P 163-183
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/
%G en
%F ADM_2016_21_2_a1
Serhii Bardyla; Oleg Gutik. On a semitopological polycyclic monoid. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/

[1] O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952

[2] L. W. Anderson, R. P. Hunter, R. J. Koch, “Some results on stability in semigroups”, Trans. Amer. Math. Soc., 117 (1965), 521–529 | DOI | MR | Zbl

[3] A. V. Arkhangel'skii, Topological Function Spaces, Kluwer, Dordrecht, 1992 | MR

[4] T. O. Banakh and S. Dimitrova, “Openly factorizable spaces and compact extensions of topological semigroups”, Commentat. Math. Univ. Carol., 51:1 (2010), 113–131 | MR | Zbl

[5] T. Banakh, S. Dimitrova, and O. Gutik, “The Rees-Suschkiewitsch Theorem for simple topological semigroups”, Mat. Stud., 31:2 (2009), 211–218 | MR | Zbl

[6] T. Banakh, S. Dimitrova, and O. Gutik, “Embedding the bicyclic semigroup into countably compact topological semigroups”, Topology Appl., 157:18 (2010), 2803–2814 | DOI | MR | Zbl

[7] M. O. Bertman and T. T. West, “Conditionally compact bicyclic semitopological semigroups”, Proc. Roy. Irish Acad., A76:21–23 (1976), 219–226 | MR | Zbl

[8] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, v. I, Marcel Dekker, Inc., New York and Basel, 1983 ; v. II, 1986 | MR | Zbl

[9] I. Chuchman and O. Gutik, “Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers”, Carpathian Math. Publ., 2:1 (2010), 119–132 | Zbl

[10] I. Chuchman and O. Gutik, “On monoids of injective partial selfmaps almost everywhere the identity”, Demonstr. Math., 44:4 (2011), 699–722 | MR | Zbl

[11] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, v. I, Amer. Math. Soc. Surveys, 7, Providence, R.I., 1961 ; v. II, 1967 | Zbl

[12] K. DeLeeuw and I. Glicksberg, “Almost-periodic functions on semigroups”, Acta Math., 105 (1961), 99–140 | DOI | MR

[13] C. Eberhart and J. Selden, “On the closure of the bicyclic semigroup”, Trans. Amer. Math. Soc., 144 (1969), 115–126 | DOI | MR | Zbl

[14] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989 | MR | Zbl

[15] I. R. Fihel and O. V. Gutik, “On the closure of the extended bicyclic semigroup”, Carpathian Math. Publ., 3:2 (2011), 131–157 | Zbl

[16] J. A. Green, “On the structure of semigroups”, Ann. Math. (2), 54 (1951), 163-–172 | DOI | MR | Zbl

[17] I. Guran, O. Gutik, O. Ravs’kyj, and I. Chuchman, “Symmetric topological groups and semigroups”, Visn. L’viv. Univ., Ser. Mekh.-Mat., 74 (2011), 61–73 | Zbl

[18] O. Gutik, “On closures in semitopological inverse semigroups with continuous inversion”, Algebra Discr. Math., 18:1 (2014), 59-–85 | MR | Zbl

[19] O. Gutik, “On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 80 (2015), 33–41

[20] O. Gutik, J. Lawson, and D. Repovs, “Semigroup closures of finite rank symmetric inverse semigroups”, Semigroup Forum, 78:2 (2009), 326–336 | DOI | MR | Zbl

[21] O. Gutik and K. Pavlyk, “Topological Brandt $\lambda$-extensions of absolutely $H$-closed topological inverse semigroups”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 61 (2003), 98–105 | Zbl

[22] O. V. Gutik and K. P. Pavlyk, “Topological semigroups of matrix units”, Algebra Discrete Math., 2005, no. 3, 1–17 | MR | Zbl

[23] O. Gutik, K. Pavlyk, and A. Reiter, “Topological semigroups of matrix units and countably compact Brandt $\lambda^0$-extensions”, Mat. Stud., 32:2 (2009), 115–131 | MR | Zbl

[24] O. Gutik and I. Pozdnyakova, “On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images”, Algebra Discrete Math., 17:2 (2014), 256–279 | MR | Zbl

[25] O. V. Gutik and A. R. Reiter, “Symmetric inverse topological semigroups of finite $\operatorname{rank}\leqslant n$”, Math. Methods and Phys.-Mech. Fields, 52:3 (2009), 7–14 ; reprinted version: J. Math. Sc., 171:4 (2010), 425–432 | MR | Zbl | DOI

[26] O. Gutik and A. Reiter, “On semitopological symmetric inverse semigroups of a bounded finite rank”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 72 (2010), 94–106 (Ukrainian) | Zbl

[27] O. Gutik and D. Repovš, “On countably compact $0$-simple topological inverse semigroups”, Semigroup Forum, 75:2 (2007), 464–469 | DOI | MR | Zbl

[28] O. Gutik and D. Repovš, “Topological monoids of monotone injective partial selfmaps of $\mathbb{N}$ with cofinite domain and image”, Stud. Sci. Math. Hung., 48:3 (2011), 342–353 | MR | Zbl

[29] O. Gutik and D. Repovš, “On monoids of monotone injective partial selfmaps of integers with cofinite domains and images”, Georgian Math. J., 19:3 (2012), 511–532 | DOI | MR | Zbl

[30] J. A. Hildebrant and R. J. Koch, “Swelling actions of $\Gamma$-compact semigroups”, Semigroup Forum, 33:1 (1986), 65–85 | DOI | MR | Zbl

[31] R. J. Koch, “On monothetic semigroups”, Proc. Amer. Math. Soc., 8 (1957), 397–401 | DOI | MR | Zbl

[32] M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Scientific, Singapore, 1998 | MR | Zbl

[33] Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. H. Péresse, “Topological graph inverse semigroups”, Topology Appl., 208 (2016), 106–126 | DOI | MR | Zbl

[34] W. D. Munn, “Uniform semilattices and bisimple inverse semigroups”, Quart. J. Math., 17:1 (1966), 151–159 | DOI | MR | Zbl

[35] M. Nivat and J.-F. Perrot, “Une généralisation du monoide bicyclique”, C. R. Acad. Sci., Paris, Sér. A, 271 (1970), 824–827 | MR | Zbl

[36] M. Petrich, Inverse Semigroups, John Wiley $\$ Sons, New York, 1984 | MR | Zbl

[37] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin, 1984 | DOI | MR | Zbl

[38] J. W. Stepp, “Algebraic maximal semilattices”, Pacific J. Math., 58:1 (1975), 243–248 | DOI | MR | Zbl