On a semitopological polycyclic monoid
Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 163-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We study algebraic structure of the $\lambda$-polycyclic monoid $P_{\lambda}$ and its topologizations. We show that the $\lambda$-polycyclic monoid for an infinite cardinal $\lambda\geqslant 2$ has similar algebraic properties so has the polycyclic monoid $P_n$ with finitely many $n\geqslant 2$ generators. In particular we prove that for every infinite cardinal $\lambda$ the polycyclic monoid $P_{\lambda}$ is a congruence-free combinatorial $0$-bisimple $0$-$E$-unitary inverse semigroup. Also we show that every non-zero element $x$ is an isolated point in $(P_{\lambda},\tau)$ for every Hausdorff topology $\tau$ on $P_{\lambda}$, such that $(P_{\lambda},\tau)$ is a semitopological semigroup, and every locally compact Hausdorff semigroup topology on $P_\lambda$ is discrete. The last statement extends results of the paper [33] obtaining for topological inverse graph semigroups. We describe all feebly compact topologies $\tau$ on $P_{\lambda}$ such that $\left(P_{\lambda},\tau\right)$ is a semitopological semigroup and its Bohr compactification as a topological semigroup. We prove that for every cardinal $\lambda\geqslant 2$ any continuous homomorphism from a topological semigroup $P_\lambda$ into an arbitrary countably compact topological semigroup is annihilating and there exists no a Hausdorff feebly compact topological semigroup which contains $P_{\lambda}$ as a dense subsemigroup.
Keywords: inverse semigroup, bicyclic monoid, polycyclic monoid, free monoid, semigroup of matrix units, topological semigroup, semitopological semigroup, Bohr compactification, embedding, locally compact, countably compact, feebly compact.
@article{ADM_2016_21_2_a1,
     author = {Serhii Bardyla and Oleg Gutik},
     title = {On a semitopological polycyclic monoid},
     journal = {Algebra and discrete mathematics},
     pages = {163--183},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/}
}
TY  - JOUR
AU  - Serhii Bardyla
AU  - Oleg Gutik
TI  - On a semitopological polycyclic monoid
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 163
EP  - 183
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/
LA  - en
ID  - ADM_2016_21_2_a1
ER  - 
%0 Journal Article
%A Serhii Bardyla
%A Oleg Gutik
%T On a semitopological polycyclic monoid
%J Algebra and discrete mathematics
%D 2016
%P 163-183
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/
%G en
%F ADM_2016_21_2_a1
Serhii Bardyla; Oleg Gutik. On a semitopological polycyclic monoid. Algebra and discrete mathematics, Tome 21 (2016) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/ADM_2016_21_2_a1/