Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism
Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr{T}_n$ be the symmetric semigroup of full transformations on a finite set with $n$ elements. In the paper we give a counting formula for the number of $\mathscr{L}$-cross-sections of $\mathscr{T}_n$ and classify all $\mathscr{L}$-cross-sections of $\mathscr{T}_n$ up to isomorphism.
Keywords: symmetric semigroup, cross-section, Green's relations.
@article{ADM_2016_21_1_a1,
     author = {Eugenija Bondar},
     title = {Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup  up to isomorphism},
     journal = {Algebra and discrete mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/}
}
TY  - JOUR
AU  - Eugenija Bondar
TI  - Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup  up to isomorphism
JO  - Algebra and discrete mathematics
PY  - 2016
SP  - 1
EP  - 17
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/
LA  - en
ID  - ADM_2016_21_1_a1
ER  - 
%0 Journal Article
%A Eugenija Bondar
%T Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup  up to isomorphism
%J Algebra and discrete mathematics
%D 2016
%P 1-17
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/
%G en
%F ADM_2016_21_1_a1
Eugenija Bondar. Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup  up to isomorphism. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/

[1] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer-Verlag, 2009, 317 pp. | MR | Zbl

[2] A. Clifford, G. Preston, The algebraic theory of semigroups, Mir, 1972, 278 pp. (Russian) | Zbl

[3] V. Pekhterev, “$\mathscr{H}$- and $\mathscr{R}$-cross-sections of the full finite semigroup $\mathscr{T}_n$”, Algebra Discrete Math., 2:3 (2003), 82–88 | MR

[4] I. B. Kozhuhov, “On transversals of the semigroup $T_n$ for the relation $\mathscr{L}$”, 6th International Algebraic Conference in Ukraine (Kamyanets-Podolsky, July, 1–7), 2007, 110

[5] E. Bondar, “$\mathscr{L}$-cross-sections of the finite symmetric semigroup,”, Algebra Discrete Math., 18:1 (2014), 27–41 | MR | Zbl