Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2016_21_1_a1, author = {Eugenija Bondar}, title = {Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism}, journal = {Algebra and discrete mathematics}, pages = {1--17}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/} }
TY - JOUR AU - Eugenija Bondar TI - Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism JO - Algebra and discrete mathematics PY - 2016 SP - 1 EP - 17 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/ LA - en ID - ADM_2016_21_1_a1 ER -
Eugenija Bondar. Classification of $\mathscr{L}$-cross-sections of the finite symmetric semigroup up to isomorphism. Algebra and discrete mathematics, Tome 21 (2016) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2016_21_1_a1/
[1] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer-Verlag, 2009, 317 pp. | MR | Zbl
[2] A. Clifford, G. Preston, The algebraic theory of semigroups, Mir, 1972, 278 pp. (Russian) | Zbl
[3] V. Pekhterev, “$\mathscr{H}$- and $\mathscr{R}$-cross-sections of the full finite semigroup $\mathscr{T}_n$”, Algebra Discrete Math., 2:3 (2003), 82–88 | MR
[4] I. B. Kozhuhov, “On transversals of the semigroup $T_n$ for the relation $\mathscr{L}$”, 6th International Algebraic Conference in Ukraine (Kamyanets-Podolsky, July, 1–7), 2007, 110
[5] E. Bondar, “$\mathscr{L}$-cross-sections of the finite symmetric semigroup,”, Algebra Discrete Math., 18:1 (2014), 27–41 | MR | Zbl