@article{ADM_2015_20_2_a3,
author = {Marcos Jardim and Daniela Moura Prata},
title = {Vector bundles on projective varieties and~representations of quivers},
journal = {Algebra and discrete mathematics},
pages = {217--249},
year = {2015},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a3/}
}
Marcos Jardim; Daniela Moura Prata. Vector bundles on projective varieties and representations of quivers. Algebra and discrete mathematics, Tome 20 (2015) no. 2, pp. 217-249. http://geodesic.mathdoc.fr/item/ADM_2015_20_2_a3/
[1] M. C. Brambilla, “Cokernel bundles and Fibonacci bundles”, Math. Nach., 281 (2008), 499–516 | DOI | MR | Zbl
[2] H. Brenner, “Looking out for stable syzygy bundles”, Adv. Math., 219 (2008), 401–427 | DOI | MR | Zbl
[3] I. Dolgachev, M. Kapranov, “Arrangements of hyperplanes and vector bundles on $\mathbb{P}^n$”, Duke Math. J., 71 (1993), 633–664 | DOI | MR | Zbl
[4] M. Jardim, V. M. F. Silva, “Decomposability criterion for linear sheaves”, Cent. Eur. J. Math., 10 (2012), 1292–1299 | DOI | MR | Zbl
[5] V. G. Kac, “Infinite root systems, representations of graphs and invariant theory”, Invent. Math., 56 (1980), 57–92 | DOI | MR | Zbl
[6] P. M. Marques, H. Soares, “Cohomological caracterisation of monads”, Math. Nachr., 287 (2014), 2057–2070 | DOI | MR | Zbl
[7] R. M. Miró-Roig, H. Soares, “Cohomological characterisation of Steiner bundles”, Forum Math., 21 (2009), 871–891 | MR | Zbl
[8] A. Schofield, “General representations of quivers”, Proc. London Math. Soc., 65 (1992), 46–64 | DOI | MR | Zbl
[9] A. Schofield, “Birational classification of moduli spaces of representations of quivers”, Indag. Mathem., 12 (2001), 407–432 | DOI | MR | Zbl
[10] H. Soares, Steiner vector bundles on algebraic varieties, Ph.D. Thesis, University of Barcelona, 2008