Lattice groups
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 126-141
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we introduce some algebraic structure associated with groups and lattices. This structure is a semigroup and it appeared as the result of our new approach to the fuzzy groups and $L$-fuzzy groups where $L$ is a lattice. This approach allows us to employ more convenient language of algebraic structures instead of currently accepted language of functions.
Keywords:
lattice, distributive lattice, fuzzy group, semigroup.
Mots-clés : group
Mots-clés : group
@article{ADM_2015_20_1_a9,
author = {L. A. Kurdachenko and V. S. Yashchuk and I. Ya. Subbotin},
title = {Lattice groups},
journal = {Algebra and discrete mathematics},
pages = {126--141},
year = {2015},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a9/}
}
L. A. Kurdachenko; V. S. Yashchuk; I. Ya. Subbotin. Lattice groups. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 126-141. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a9/
[1] Goguen J. A., “L-Fuzzy Sets”, Journal of Math. Analysis and Applications, 18 (1967), 145–174 | DOI | MR | Zbl
[2] Kurdachenko L. A., Grin K. O., Turbay N. A., “On normalizers in fuzzy groups”, Algebra and Discrete Mathematics, 15 (2013), 23–36 | MR | Zbl
[3] Kurdachenko L. A., Otal J., Subbotin I.Ya., “On permutable fuzzy subgroups”, Serdica Mathematical Journal, 39 (2013), 83–102 | MR | Zbl
[4] Mordeson J. N., Nair P. S., Fuzzy Mathematics, Springer, Berlin, 2001 | MR
[5] Mordeson J. N., Bhutani K. R., Rosenfeld A., Fuzzy Group Theory, Springer, Berlin, 2005 | Zbl
[6] Zadeh L. A., “Fuzzy sets”, Information Control, 8 (1965), 338–353 | DOI | MR | Zbl