Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_1_a6, author = {Dilber Ko\c{c}ak}, title = {Finitely presented quadratic algebras of intermediate growth}, journal = {Algebra and discrete mathematics}, pages = {69--88}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a6/} }
Dilber Koçak. Finitely presented quadratic algebras of intermediate growth. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a6/
[1] Ralph K. Amayo and Ian Stewart, Infinite-dimensional Lie algebras, Noordhoff International Publishing, Leyden, 1974 | MR | Zbl
[2] George M. Bergman, “The diamond lemma for ring theory”, Adv. in Math., 29:2 (1978), 178–218 | DOI | MR
[3] A. E. Bereznyĭ, “Discrete subexponential groups”, Differential geometry, Lie groups and mechanics V, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 123, 1983, 155–166 | MR | Zbl
[4] Jörgen Backelin and Ralf Fröberg, “Koszul algebras, Veronese subrings and rings with linear resolutions”, Rev. Roumaine Math. Pures Appl., 30:2 (1985), 85–97 | MR
[5] Laurent Bartholdi and Rostislav I. Grigorchuk, “Lie methods in growth of groups and groups of finite width”, Computational and geometric aspects of modern algebra (Edinburgh 1998), London Math. Soc. Lecture Note Ser., 275, Cambridge Univ. Press, Cambridge, 2000, 1–27 | MR | Zbl
[6] Nicolas Bourbaki, Lie groups and Lie algebras, Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989, Translated from the French, Reprint of the 1975 edition | MR | Zbl
[7] M. P. de Oliveira, “On 3-graded Lie algebras in a pair of generators: a classification”, J. Pure Appl. Algebra, 178:1 (2003), 73–85 | DOI | MR | Zbl
[8] I. M. Gel'fand and A. A. Kirillov, “On fields connected with the enveloping algebras of Lie algebras”, Dokl. Akad. Nauk SSSR, 167 (1966), 503–505 | MR | Zbl
[9] I. M. Gelfand and A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie”, Inst. Hautes Études Sci. Publ. Math., 31 (1966), 5–19 | DOI | MR
[10] V. E. Govorov, “Graded algebras”, Mat. Zametki, 12 (1972), 197–204 | MR | Zbl
[11] R. I. Grigorchuk, “On the Milnor problem of group growth”, Dokl. Akad. Nauk SSSR, 271:1 (1983), 30–33 | MR | Zbl
[12] R. I. Grigorchuk, “Construction of $p$-groups of intermediate growth that have a continuum of factor-groups”, Algebra i Logika, 23:4 (1984), 383–394 | DOI | MR | Zbl
[13] Mikhael Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR
[14] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 1985 | MR | Zbl
[15] Selecta Math. Soviet., 9:2 (1990), 137–153 | MR | Zbl | Zbl
[16] Yuji Kobayashi, “A finitely presented monoid which has solvable word problem but has no regular complete presentation”, Theoret. Comput. Sci., 146:1–2 (1995), 321–329 | MR | Zbl
[17] J. Milnor, “A note on curvature and fundamental group”, J. Differential Geometry, 2 (1968), 1–7 | MR | Zbl
[18] V. M. Petrogradskiĭ, “Some type of intermediate growth in Lie algebras”, Uspekhi Mat. Nauk, 48:5(293) (1993), 181–182 | MR | Zbl
[19] Alexander Polishchuk and Leonid Positselski, Quadratic algebras, University Lecture Series, 37, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[20] James B. Shearer, “A graded algebra with a nonrational Hilbert series”, J. Algebra, 62:1 (1980), 228–231 | DOI | MR | Zbl
[21] M. K. Smith, “Universal enveloping algebras with subexponential but not polynomially bounded growth”, Proc. Amer. Math. Soc., 60:1 (1976), 22–24 | DOI | MR
[22] Ian Stewart, “Finitely presented infinite-dimensional simple Lie algebras”, Arch. Math. (Basel), 26:5 (1975), 504–507 | MR | Zbl
[23] A. S. Švarc, “A volume invariant of coverings”, Dokl. Akad. Nauk SSSR (N. S.), 105 (1955), 32–34 | MR
[24] V. A. Ufnarovskiĭ, “Poincaré series of graded algebras”, Mat. Zametki, 27:1 (1980), 21–32 | MR | Zbl