Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_20_1_a4, author = {Paula Catarino and Paulo Vasco and Helena Campos and Ana Paula Aires and Anabela Borges}, title = {New families of {Jacobsthal} and {Jacobsthal-Lucas} numbers}, journal = {Algebra and discrete mathematics}, pages = {40--54}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a4/} }
TY - JOUR AU - Paula Catarino AU - Paulo Vasco AU - Helena Campos AU - Ana Paula Aires AU - Anabela Borges TI - New families of Jacobsthal and Jacobsthal-Lucas numbers JO - Algebra and discrete mathematics PY - 2015 SP - 40 EP - 54 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a4/ LA - en ID - ADM_2015_20_1_a4 ER -
%0 Journal Article %A Paula Catarino %A Paulo Vasco %A Helena Campos %A Ana Paula Aires %A Anabela Borges %T New families of Jacobsthal and Jacobsthal-Lucas numbers %J Algebra and discrete mathematics %D 2015 %P 40-54 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a4/ %G en %F ADM_2015_20_1_a4
Paula Catarino; Paulo Vasco; Helena Campos; Ana Paula Aires; Anabela Borges. New families of Jacobsthal and Jacobsthal-Lucas numbers. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 40-54. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a4/
[1] C. Bolat, H. Kőse, “On the Properties of $k$-Fibonacci Numbers”, Int. J. Contemp. Math. Sci., 5:22 (2010), 1097–1105 | MR | Zbl
[2] H. Campos, P. Catarino, A. P. Aires, P. Vasco, A. Borges, “On some Identities of $k$-Jacobsthal-Lucas Numbers”, Int. J. Math. Anal. (Ruse), 8:10 (2014), 489–494 | MR
[3] P. Catarino, “On Some Identities and Generating Functions for $k$-Pell Numbers”, Int. J. Math. Anal. (Ruse), 7:38 (2013), 1877–1884 | MR | Zbl
[4] P. Catarino, “On some identities for $k$-Fibonacci sequence”, Int. J. Contemp. Math. Sci., 9:1 (2014), 37–42
[5] P. Catarino, P. Vasco, “On some Identities and Generating Functions for $k$-Pell-Lucas sequence”, Appl. Math. Sci., 7:98 (2013), 4867–4873 | MR
[6] P. Catarino, P. Vasco, “Modified $k$-Pell Sequence: Some Identities and Ordinary Generating Function”, Appl. Math. Sci., 7:121 (2013), 6031–6037 | MR
[7] P. Catarino, P. Vasco, “Some basic properties and a two-by-two matrix involving the $k$-Pell Numbers”, Int. J. Math. Anal. (Ruse), 7:45 (2013), 2209–2215 | MR
[8] A. Dasdemir, “On the Jacobsthal numbers by matrix method”, Fen Derg., 7:1 (2012), 69–76 | MR
[9] R. A. Dunlap, The Golden Ratio and Fibonacci numbers, World Scientific Press, Singapore, 1997 | MR
[10] M. El-Mikkawy, T. Sogabe, “A new family of $k$-Fibonacci numbers”, Appl. Math. Comput., 215:12 (2010), 4456–4461 | DOI | MR | Zbl
[11] A. F. Horadam, “Basic properties of a certain generalized sequence of numbers”, Fibonacci Quart., 3:3 (1965), 161–176 | MR | Zbl
[12] A. F. Horadam, “Generating functions for powers of a certain generalized sequences of numbers”, Duke Math. J., 32:3 (1965), 437–446 | DOI | MR | Zbl
[13] A. F. Horadam, “Pell identities”, Fibonacci Quart., 9:3 (1971), 245–263 | MR | Zbl
[14] D. Jhala, K. Sisodiya, G. P. S. Rathore, “On Some Identities for $k$-Jacobsthal Numbers”, Int. J. Math. Anal. (Ruse), 7:12 (2013), 551–556 | MR | Zbl
[15] F. Koken, D. Bozkurt, “On the Jacobsthal numbers by matrix method”, Int. J. Contemp. Math. Sci., 3:13 (2008), 605–614 | MR | Zbl
[16] F. Koken, D. Bozkurt, “On the Jacobsthal-Lucas numbers by matrix method”, Int. J. Contemp. Math. Sci., 3:33 (2008), 1629–1633 | MR | Zbl
[17] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley and Sons, New York, 2001 | MR
[18] T. Koshy, “Fibonacci, Lucas, and Pell numbers, and Pascal's triangle”, Applied Probability Trust., 2011, 125–132
[19] F. Lu, Z. Jiang, “The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method”, Wseas Transactions on Mathematics, 12:4 (2013), 449–458
[20] D. Marques, “The Order of Appearance of the Product of Consecutive Lucas Numbers”, Fibonacci Quart., 51:1 (2013), 38–43 | MR | Zbl
[21] The On-line Encyclopedia of Integer Sequences, ed. OEIS Foundation Inc., 2011 http://oeis.org