On characteristic properties of semigroups
Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be a class of semigroups and $\mathcal{P}$ be a set of general properties of semigroups. We call a subset $Q$ of $\mathcal{P}$ characteristic for a semigroup $S\in\mathcal{K}$ if, up to isomorphism and anti-isomorphism, $S$ is the only semigroup in $\mathcal{K}$, which satisfies all the properties from $Q$. The set of properties $\mathcal{P}$ is called char-complete for $\mathcal{K}$ if for any $S\in \mathcal{K}$ the set of all properties $P\in\mathcal{P}$, which hold for the semigroup $S$, is characteristic for $S$. We indicate a 7-element set of properties of semigroups which is a minimal char-complete set for the class of semigroups of order $3$.
Keywords: semigroup, idempotent, Cayley table, characteristic property, char-complete set.
Mots-clés : anti-isomorphism
@article{ADM_2015_20_1_a3,
     author = {Vitaliy M. Bondarenko and Yaroslav V. Zaciha},
     title = {On characteristic properties of semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a3/}
}
TY  - JOUR
AU  - Vitaliy M. Bondarenko
AU  - Yaroslav V. Zaciha
TI  - On characteristic properties of semigroups
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 32
EP  - 39
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a3/
LA  - en
ID  - ADM_2015_20_1_a3
ER  - 
%0 Journal Article
%A Vitaliy M. Bondarenko
%A Yaroslav V. Zaciha
%T On characteristic properties of semigroups
%J Algebra and discrete mathematics
%D 2015
%P 32-39
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a3/
%G en
%F ADM_2015_20_1_a3
Vitaliy M. Bondarenko; Yaroslav V. Zaciha. On characteristic properties of semigroups. Algebra and discrete mathematics, Tome 20 (2015) no. 1, pp. 32-39. http://geodesic.mathdoc.fr/item/ADM_2015_20_1_a3/

[1] V. M. Bondarenko, Y. V. Zaciha, “On defining relations for minimal generator systems of three-order semigroups”, Science Journal of National Pedagogical Dragomanov University, Series 1: Physics and Mathematics, 2013, no. 14, 62–67 (Ukrainian)