On various parameters of $\mathbb{Z}_q$-simplex codes for an even integer $q$
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 243-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we defined the $\mathbb{Z}_q$-linear codes and discussed its various parameters. We constructed $\mathbb{Z}_q$-Simplex code and $\mathbb{Z}_q$-MacDonald code and found its parameters. We have given a lower and an upper bounds of its covering radius for $q$ is an even integer.
Keywords: codes over finite rings, $\mathbb{Z}_q$-linear code, $\mathbb{Z}_q$-simplex code, $\mathbb{Z}_q$-MacDonald code, covering radius.
@article{ADM_2015_19_2_a7,
     author = {P. Ch. Pandian and C. Durairajan},
     title = {On various parameters of  $\mathbb{Z}_q$-simplex codes for an even integer $q$},
     journal = {Algebra and discrete mathematics},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a7/}
}
TY  - JOUR
AU  - P. Ch. Pandian
AU  - C. Durairajan
TI  - On various parameters of  $\mathbb{Z}_q$-simplex codes for an even integer $q$
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 243
EP  - 253
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a7/
LA  - en
ID  - ADM_2015_19_2_a7
ER  - 
%0 Journal Article
%A P. Ch. Pandian
%A C. Durairajan
%T On various parameters of  $\mathbb{Z}_q$-simplex codes for an even integer $q$
%J Algebra and discrete mathematics
%D 2015
%P 243-253
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a7/
%G en
%F ADM_2015_19_2_a7
P. Ch. Pandian; C. Durairajan. On various parameters of  $\mathbb{Z}_q$-simplex codes for an even integer $q$. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a7/

[1] Aoki T., Gaborit P., Harada M., Ozeki M. and Solé P., “On the covering radius of $\mathbb Z_{4}$ codes and their lattices”, IEEE Trans. Inform. Theory, 45:6 (1999), 2162–2168 | DOI | MR | Zbl

[2] Bhandari M. C., Gupta M. K. and Lal A. K., “On $\mathbb Z_4$ Simplex codes and their gray images”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-13, Lecture Notes in Computer Science, 1719, 1999, 170–180 | DOI | MR | Zbl

[3] Bonnecaze A., Solé P., Bachoc C. and Mourrain B., “Type II codes over $\mathbb Z_4$”, IEEE Trans. Inform. Theory, 43 (1997), 969–976 | DOI | MR | Zbl

[4] Bonnecaze A. and Udaya P., “Cyclic Codes and Self-Dual Codes over $F_2+u F_2$”, IEEE Trans. Inform. Theory, 45:4 (1999), 1250–1254 | DOI | MR

[5] Cohen G. D. Karpovsky M. G., Mattson H. F. and Schatz J. R., “Covering radius-Survey and recent results”, IEEE Trans. Inform. Theory, 31:3 (1985), 328–343 | DOI | MR | Zbl

[6] Cohen C., Lobstein A. and Sloane N. J. A., “Further Results on the Covering Radius of Codes”, IEEE Trans. Inform. Theory, 32:5 (1986), 680–694 | DOI | MR | Zbl

[7] Colbourn C. J. and Gupta M. K., “On quaternary MacDonald codes”, Proc. Information Technology : Coding and Computing, ITCC (April), 2003, 212–215

[8] Conway J. H. and Sloane N. J. A., “Self-dual codes over the integers modulo $4$”, Journal of Combinatorial Theory Series A, 62 (1993), 30–45 | DOI | MR | Zbl

[9] Dougherty S. T., Gulliver T. A. and Harada M., “Type II codes over finite rings and even unimodular lattices”, J. Alg. Combin., 9 (1999), 233–250 | DOI | MR | Zbl

[10] Dougherty S. T., Gaborit P., Harda M. and Sole P., “Type II codes over $\mathbb F_{2}+u\mathbb F_{2}$”, IEEE Trans. Inform. Theory, 45 (1999), 32–45 | DOI | MR | Zbl

[11] Dougherty S. T., Harada M. and Solé P., “Self-dual codes over rings and the Chinese Remainder Theorem”, Hokkaido Math. J., 28 (1999), 253–283 | DOI | MR | Zbl

[12] Durairajan C., On Covering Codes and Covering Radius of Some Optimal Codes, PhD Thesis, Department of Mathematics, IIT, Kanpur, 1996

[13] El-Atrash M. and Al-Ashker M., “Linear Codes over ${F}_2 + u{F}_2$”, Journal of The Islamic University of Gaza, 11:2 (2003), 53–68

[14] Gupta M. K. and Durairajan C., On the Covering Radius of some Modular Codes, Communicated

[15] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A. and Solé P., “The $\mathbb Z_4$-linearity of kerdock, preparata, goethals, and related codes”, IEEE Trans. Inform. Theory, 40 (1994), 301–319 | DOI | MR | Zbl

[16] MacWilliam F. J and Sloane N. J. A., Theory of Error-Correcting codes, North-Holland, The Netherlands: Amsterdam, 1977 | Zbl

[17] Mattson H. F. Jr., “An Improved upper bound on covering radius”, Lecture Notes in Computer Science, 228, Springer, 1986, 90–106 | DOI | MR

[18] Vazirani V. V., Saran H. and SundarRajan B., “An efficient algorithm for constructing minimal trellises for codes over finite abelian groups”, IEEE Trans. Inform. Theory, 42:6 (1996), 1839–1854 | DOI | MR | Zbl