Symmetric modules over their endomorphism rings
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 283-294

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=\operatorname{End}_R(M)$. In this paper, we study right $R$-modules $M$ having the property for $f,g \in \operatorname{End}_R(M)$ and for $m\in M$, the condition $fgm = 0$ implies $gfm = 0$. We prove that some results of symmetric rings can be extended to symmetric modules for this general setting.
Keywords: symmetric modules, reduced modules, semicommutative modules, Rickart modules, principally projective modules.
Mots-clés : rigid modules, abelian modules
@article{ADM_2015_19_2_a10,
     author = {B. Ungor and Y. Kurtulmaz and S. Hal{\i}c{\i}oglu and A. Harmanci},
     title = {Symmetric modules over their endomorphism rings},
     journal = {Algebra and discrete mathematics},
     pages = {283--294},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/}
}
TY  - JOUR
AU  - B. Ungor
AU  - Y. Kurtulmaz
AU  - S. Halıcıoglu
AU  - A. Harmanci
TI  - Symmetric modules over their endomorphism rings
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 283
EP  - 294
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/
LA  - en
ID  - ADM_2015_19_2_a10
ER  - 
%0 Journal Article
%A B. Ungor
%A Y. Kurtulmaz
%A S. Halıcıoglu
%A A. Harmanci
%T Symmetric modules over their endomorphism rings
%J Algebra and discrete mathematics
%D 2015
%P 283-294
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/
%G en
%F ADM_2015_19_2_a10
B. Ungor; Y. Kurtulmaz; S. Halıcıoglu; A. Harmanci. Symmetric modules over their endomorphism rings. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 283-294. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/