Symmetric modules over their endomorphism rings
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 283-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=\operatorname{End}_R(M)$. In this paper, we study right $R$-modules $M$ having the property for $f,g \in \operatorname{End}_R(M)$ and for $m\in M$, the condition $fgm = 0$ implies $gfm = 0$. We prove that some results of symmetric rings can be extended to symmetric modules for this general setting.
Keywords: symmetric modules, reduced modules, semicommutative modules, Rickart modules, principally projective modules.
Mots-clés : rigid modules, abelian modules
@article{ADM_2015_19_2_a10,
     author = {B. Ungor and Y. Kurtulmaz and S. Hal{\i}c{\i}oglu and A. Harmanci},
     title = {Symmetric modules over their endomorphism rings},
     journal = {Algebra and discrete mathematics},
     pages = {283--294},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/}
}
TY  - JOUR
AU  - B. Ungor
AU  - Y. Kurtulmaz
AU  - S. Halıcıoglu
AU  - A. Harmanci
TI  - Symmetric modules over their endomorphism rings
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 283
EP  - 294
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/
LA  - en
ID  - ADM_2015_19_2_a10
ER  - 
%0 Journal Article
%A B. Ungor
%A Y. Kurtulmaz
%A S. Halıcıoglu
%A A. Harmanci
%T Symmetric modules over their endomorphism rings
%J Algebra and discrete mathematics
%D 2015
%P 283-294
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/
%G en
%F ADM_2015_19_2_a10
B. Ungor; Y. Kurtulmaz; S. Halıcıoglu; A. Harmanci. Symmetric modules over their endomorphism rings. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 283-294. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a10/

[1] N. Agayev, G. Güngöroğlu, A. Harmanci and S. Halicioglu, “Abelian modules”, Acta Math. Univ. Comenianae, 78:2 (2009), 235–244 | MR | Zbl

[2] N. Agayev, S. Halicioglu and A. Harmanci, “On symmetric modules”, Riv. Mat. Univ. Parma, 8:2 (2009), 91–99 | MR | Zbl

[3] N. Agayev, S. Halicioglu and A. Harmanci, “On reduced modules”, Commun. Fac. Sci. Univ. Ank. Series A1, 58:1 (2009), 9–16 | MR | Zbl

[4] N. Agayev, S. Halicioglu and A. Harmanci, “On Rickart modules”, Bull. Iran. Math. Soc., 38:2 (2012), 433–445 | MR | Zbl

[5] D. D. Anderson and V. Camillo, “Semigroups and rings whose zero products commute”, Comm. Algebra, 27:6 (1999), 2847–2852 | DOI | MR | Zbl

[6] A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Pitman, Boston, 1980 | MR | Zbl

[7] M. W. Evans, “On commutative p. p. rings”, Pacific J. Math., 41 (1972), 687–697 | DOI | MR | Zbl

[8] A. Ghorbani and M. R. Vedadi, “Epi-retractable modules and some applications”, Bull. Iran. Math. Soc., 35:1 (2009), 155–166 | MR | Zbl

[9] K. R. Goodearl and A. K. Boyle, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc., 7, no. 177, 1976 | DOI | MR

[10] A. Hattori, “A foundation of the torsion theory over general rings”, Nagoya Math. J. 17, 1960, 147–158 | MR | Zbl

[11] C. Y. Hong, N. K. Kim and T. K. Kwak, “Ore extensions of Baer and p. p.-rings”, J. Pure Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl

[12] I. Kaplansky, Rings of operators, Math. Lecture Note Series, Benjamin, New York, 1965

[13] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[14] T. Y. Lam, Exercises in classical ring theory, Springer-Verlag, New York, 1995 | MR

[15] J. Lambek, “On the representation of modules by sheaves of factor modules”, Canad. Math. Bull., 14:3 (1971), 359–368 | DOI | MR | Zbl

[16] T. K. Lee and Y. Zhou, “Reduced modules”, Rings, modules, algebras and abelian groups, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004, 365–377 | MR | Zbl

[17] B. L. Osofsky, “A counter-example to a lemma of Skornjakov”, Pacific J. Math., 15 (1965), 985–987 | DOI | MR | Zbl

[18] R. Raphael, “Some remarks on regular and strongly regular rings”, Canad. Math. Bull., 17:5, (1974/75), 709–712 | DOI | MR | Zbl

[19] S. T. Rizvi and C. S. Roman, “Baer and quasi-Baer modules”, Comm. Algebra, 32 (2004), 103–123 | DOI | MR | Zbl

[20] S. T. Rizvi and C. S. Roman, “On direct sums of Baer modules”, J. Algebra, 321 (2009), 682–696 | DOI | MR | Zbl

[21] J. E. Roos, “Sur les categories spectrales localement distributives”, C. R. Acad. Sci. Paris, 265 (1967), 14–17 | MR | Zbl

[22] B. Ungor, N. Agayev, S. Halicioglu and A. Harmanci, “On principally quasi-Baer modules”, Albanian J. Math., 5:3 (2011), 165–173 | MR | Zbl

[23] J. M. Zelmanowitz, “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl