On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 162-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known [16] that the semigroup $\mathcal{T}_n$ of all total transformations of a given $n$-element set $X_n$ is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain $X_n$ is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of $X_n$ is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain $X_n$ are covered by their inverse subsemigroups precisely when $n \leq 3$.
Keywords: semigroup, semilattice, inverse subsemigroup, strong inverse, order-preserving transformation, orientation-preserving transformation, orientation-reversing transformation.
Mots-clés : transformation
@article{ADM_2015_19_2_a1,
     author = {Paula Catarino and Peter M. Higgins and Inessa Levi},
     title = {On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations},
     journal = {Algebra and discrete mathematics},
     pages = {162--171},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a1/}
}
TY  - JOUR
AU  - Paula Catarino
AU  - Peter M. Higgins
AU  - Inessa Levi
TI  - On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 162
EP  - 171
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a1/
LA  - en
ID  - ADM_2015_19_2_a1
ER  - 
%0 Journal Article
%A Paula Catarino
%A Peter M. Higgins
%A Inessa Levi
%T On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations
%J Algebra and discrete mathematics
%D 2015
%P 162-171
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a1/
%G en
%F ADM_2015_19_2_a1
Paula Catarino; Peter M. Higgins; Inessa Levi. On inverse subsemigroups of the semigroup of orientation-preserving or orientation-reversing transformations. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 162-171. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a1/

[1] A. Ja. Aizenštat, “The defining relations of the endomorphism semigroup of a finite linearly ordered set”, Sibirsk. Mat. Ž., 3 (1962), 161–169 (Russian) | MR | Zbl

[2] A. Ja. Aizenštat, “On homomorphisms of semigroups of endomorphisms of ordered sets”, Leningrad. Gos. Pedagog. Inst. Učen. Zap., 238 (1962), 38–48 (Russian) | MR | Zbl

[3] R. E. Arthur and N. Ruškuc, “Presentations for two extensions of the monoid of order-preserving mappings on a finite chain”, Southeast Asian Bull. Math, 24 (2000), 1–7 | DOI | MR | Zbl

[4] P. M. Catarino, “Monoids of orientation-preserving mappings of a finite chain and their presentation”, Semigroups and Applications (St. Andrews 1997), World Sci. Publ., River Edge, NJ, 1998, 39–46 | MR | Zbl

[5] P. M. Catarino and P. M. Higgins, “The monoid of orientation-preserving mappings on a chain”, Semigroup Forum, 58 (1999), 190–206 | DOI | MR | Zbl

[6] P. M. Catarino and P. M. Higgins, “The pseudovariety generated by all semigroups of orientation preserving transformations on a finite cycle”, Int. J. Algebra Comput., 12:3 (2002), 387–405 | DOI | MR | Zbl

[7] I. Dimitrova, V. H. Fernandes and J. Koppitz, “The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain”, Publ. Math. Debrecen, 81:1–2 (2012), 11–29 | DOI | MR | Zbl

[8] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, “Congruences on monoids of transformations preserving the orientation on a finite chain”, J. Algebra, 321:3 (2009), 743–757 | DOI | MR | Zbl

[9] L. M. Gluskin, “Elementary Generalized Groups”, Mat. Sb. N. S., 41(83) (1957), 23–36 | MR | Zbl

[10] G. M. S. Gomes and J. M. Howie, “On the ranks of certain semigroups of order-preserving transformations”, Semigroup Forum, 45:3 (1992), 272–282 | DOI | MR | Zbl

[11] P. M. Higgins, Techniques of semigroup theory, Oxford Science Publications, The Clarendon Press, New York; Oxford University Press, 1992 | MR

[12] P. M. Higgins, “Combinatorial results for semigroups of order-preserving transformations”, Math. Proc. Camb. Phil. Soc., 113 (1993), 281–296 | DOI | MR | Zbl

[13] J. M. Howie, “Products of idempotents in certain semigroups of transformations”, Proc. Edinburgh Math. Soc., 17 (1971), 223–236 | DOI | MR | Zbl

[14] A. Laradji and A. Umar, “Combinatorial results for semigroups of order-preserving full transformations”, Semigroup Forum, 72 (2006), 51–62 | DOI | MR | Zbl

[15] D. B. McAlister, “Semigroups generated by a group and an idempotent”, Comm. Algebra, 26:2 (1998), 515–547 | DOI | MR | Zbl

[16] B. M. Schein, “A symmetric semigroup of transformations is covered by its inverse subsemigroups”, Acta Mat. Acad. Sci. Hung., 22 (1971), 163–171 | DOI | MR

[17] A. Umar, “Combinatorial results for semigroups of orientation-preserving partial transformations”, J. Integer Seq., 14 (2011), Article 11.7.5 | MR | Zbl

[18] A. Vernitski, “Inverse subsemigroups and classes of finite aperiodic semigroups”, Semigroup Forum, 78 (2009), 486–497 | DOI | MR | Zbl