Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type
Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 145-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a derived equivalence classification of algebras of the form $\hat{A}/\langle\phi\rangle$ for some piecewise hereditary algebra $A$ of tree type and some automorphism $\phi$ of $\hat{A}$ such that $\phi(A^{[0]}) = A^{[n]}$ for some positive integer $n$.
Keywords: derived equivalence, piecewise hereditary, orbit categories.
Mots-clés : quivers
@article{ADM_2015_19_2_a0,
     author = {Hideto Asashiba and Mayumi Kimura},
     title = {Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type},
     journal = {Algebra and discrete mathematics},
     pages = {145--161},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/}
}
TY  - JOUR
AU  - Hideto Asashiba
AU  - Mayumi Kimura
TI  - Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 145
EP  - 161
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/
LA  - en
ID  - ADM_2015_19_2_a0
ER  - 
%0 Journal Article
%A Hideto Asashiba
%A Mayumi Kimura
%T Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type
%J Algebra and discrete mathematics
%D 2015
%P 145-161
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/
%G en
%F ADM_2015_19_2_a0
Hideto Asashiba; Mayumi Kimura. Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 145-161. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/

[1] H. Asashiba, “A covering technique for derived equivalence”, J. Algebra, 191 (1997), 382–415 | DOI | MR | Zbl

[2] H. Asashiba, “The derived equivalence classification of representation-finite selfinjective algebras”, J. of Algebra, 214 (1999), 182–221 | DOI | MR | Zbl

[3] H. Asashiba, “Derived and stable equivalence classification of twisted multifold extensions of piecewise hereditary algebras of tree type”, J. Algebra, 249 (2002), 345–376 | DOI | MR | Zbl

[4] I. Assem, D. Happel, “Generalized tilted algebras of type $A_n$”, Comm. Algebra, 9:20 (1981), 2101–2125 | DOI | MR | Zbl

[5] P. Gabriel, A. V. Roiter, “Representations of finite-dimensional algebras”, Encyclopaedia of Mathematical sciences, 73, Springer, 1992 | MR | Zbl

[6] B. Keller, “Deriving DG categories”, Ann. scient. Éc. Norm. Sup. (4), 27 (1994), 63–102 | MR | Zbl

[7] F. H. Membrillo-Hernández, “Brauer tree algebras and derived equivalence”, J. Pure Appl. Algebra, 114:3 (1997), 231–258 | DOI | MR | Zbl

[8] J. Rickard, “Morita theory for derived categories”, J. London Math. Soc., 39 (1989), 436–456 | DOI | MR | Zbl

[9] J. Rickard, “Derived categories and stable equivalence”, J. Pure and Appl. Alg., 61 (1989), 303–317 | DOI | MR | Zbl

[10] A. Skowroński, “Selfinjective algebras of polynomial growth”, Math. Ann., 285 (1989), 177–199 | DOI | MR | Zbl

[11] A. Skowroński, “Selfinjective algebras: finite and tame type”, Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics, 406, Amer. Math. Soc., Providence, RI, 2006, 169–238 | DOI | MR | Zbl