Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2015_19_2_a0, author = {Hideto Asashiba and Mayumi Kimura}, title = {Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type}, journal = {Algebra and discrete mathematics}, pages = {145--161}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/} }
TY - JOUR AU - Hideto Asashiba AU - Mayumi Kimura TI - Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type JO - Algebra and discrete mathematics PY - 2015 SP - 145 EP - 161 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/ LA - en ID - ADM_2015_19_2_a0 ER -
%0 Journal Article %A Hideto Asashiba %A Mayumi Kimura %T Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type %J Algebra and discrete mathematics %D 2015 %P 145-161 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/ %G en %F ADM_2015_19_2_a0
Hideto Asashiba; Mayumi Kimura. Derived equivalence classification of generalized multifold extensions of piecewise hereditary algebras of tree type. Algebra and discrete mathematics, Tome 19 (2015) no. 2, pp. 145-161. http://geodesic.mathdoc.fr/item/ADM_2015_19_2_a0/
[1] H. Asashiba, “A covering technique for derived equivalence”, J. Algebra, 191 (1997), 382–415 | DOI | MR | Zbl
[2] H. Asashiba, “The derived equivalence classification of representation-finite selfinjective algebras”, J. of Algebra, 214 (1999), 182–221 | DOI | MR | Zbl
[3] H. Asashiba, “Derived and stable equivalence classification of twisted multifold extensions of piecewise hereditary algebras of tree type”, J. Algebra, 249 (2002), 345–376 | DOI | MR | Zbl
[4] I. Assem, D. Happel, “Generalized tilted algebras of type $A_n$”, Comm. Algebra, 9:20 (1981), 2101–2125 | DOI | MR | Zbl
[5] P. Gabriel, A. V. Roiter, “Representations of finite-dimensional algebras”, Encyclopaedia of Mathematical sciences, 73, Springer, 1992 | MR | Zbl
[6] B. Keller, “Deriving DG categories”, Ann. scient. Éc. Norm. Sup. (4), 27 (1994), 63–102 | MR | Zbl
[7] F. H. Membrillo-Hernández, “Brauer tree algebras and derived equivalence”, J. Pure Appl. Algebra, 114:3 (1997), 231–258 | DOI | MR | Zbl
[8] J. Rickard, “Morita theory for derived categories”, J. London Math. Soc., 39 (1989), 436–456 | DOI | MR | Zbl
[9] J. Rickard, “Derived categories and stable equivalence”, J. Pure and Appl. Alg., 61 (1989), 303–317 | DOI | MR | Zbl
[10] A. Skowroński, “Selfinjective algebras of polynomial growth”, Math. Ann., 285 (1989), 177–199 | DOI | MR | Zbl
[11] A. Skowroński, “Selfinjective algebras: finite and tame type”, Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics, 406, Amer. Math. Soc., Providence, RI, 2006, 169–238 | DOI | MR | Zbl