On stable finiteness of group rings
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 44-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary field or division ring $K$ and an arbitrary group $G$, stable finiteness of $K[G]$ is equivalent to direct finiteness of $K[G\times H]$ for all finite groups $H$.
Keywords: Kaplansky's Direct Finiteness Conjecture, stable finiteness.
@article{ADM_2015_19_1_a5,
     author = {K. Dykema and K. Juschenko},
     title = {On stable finiteness of group rings},
     journal = {Algebra and discrete mathematics},
     pages = {44--47},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/}
}
TY  - JOUR
AU  - K. Dykema
AU  - K. Juschenko
TI  - On stable finiteness of group rings
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 44
EP  - 47
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/
LA  - en
ID  - ADM_2015_19_1_a5
ER  - 
%0 Journal Article
%A K. Dykema
%A K. Juschenko
%T On stable finiteness of group rings
%J Algebra and discrete mathematics
%D 2015
%P 44-47
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/
%G en
%F ADM_2015_19_1_a5
K. Dykema; K. Juschenko. On stable finiteness of group rings. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 44-47. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/

[1] P. Ara, K. O'Meara, and F. Perera, “Stable finiteness of group rings in arbitrary characteristic”, Adv. Math., 170 (2002), 224–238 | MR | Zbl

[2] K. Dykema, T. Heister, and K. Juschenko, “Finitely presented groups related to Kaplansky's Direct Finiteness Conjecture”, Exp. Math. (to appear) | MR

[3] G. Elek and E. Szabó, “Sofic groups and direct finiteness”, J. Algebra, 280 (2004), 426–434 | DOI | MR | Zbl

[4] I. Kaplansky, Fields and rings, The University of Chicago Press, 1969 | MR