On stable finiteness of group rings
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 44-47
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary field or division ring $K$ and an arbitrary group $G$, stable finiteness of $K[G]$ is equivalent to direct finiteness of $K[G\times H]$ for all finite groups $H$.
Keywords:
Kaplansky's Direct Finiteness Conjecture, stable finiteness.
@article{ADM_2015_19_1_a5,
author = {K. Dykema and K. Juschenko},
title = {On stable finiteness of group rings},
journal = {Algebra and discrete mathematics},
pages = {44--47},
year = {2015},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/}
}
K. Dykema; K. Juschenko. On stable finiteness of group rings. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 44-47. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a5/
[1] P. Ara, K. O'Meara, and F. Perera, “Stable finiteness of group rings in arbitrary characteristic”, Adv. Math., 170 (2002), 224–238 | MR | Zbl
[2] K. Dykema, T. Heister, and K. Juschenko, “Finitely presented groups related to Kaplansky's Direct Finiteness Conjecture”, Exp. Math. (to appear) | MR
[3] G. Elek and E. Szabó, “Sofic groups and direct finiteness”, J. Algebra, 280 (2004), 426–434 | DOI | MR | Zbl
[4] I. Kaplansky, Fields and rings, The University of Chicago Press, 1969 | MR