On a deformation diameter of Dynkin diagrams
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 39-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a deformation distance and calculate the diameter of Dynkin diagrams respect to this distance.
Keywords: quadratic form, $P$-limiting number, graph, Dynkin diagram, weight, diameter.
Mots-clés : distance
@article{ADM_2015_19_1_a4,
     author = {Vitaliy M. Bondarenko and Vitaliy V. Bondarenko and Viktoria A. Lisykevych and Yulia M. Pereguda},
     title = {On a deformation diameter of {Dynkin} diagrams},
     journal = {Algebra and discrete mathematics},
     pages = {39--43},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a4/}
}
TY  - JOUR
AU  - Vitaliy M. Bondarenko
AU  - Vitaliy V. Bondarenko
AU  - Viktoria A. Lisykevych
AU  - Yulia M. Pereguda
TI  - On a deformation diameter of Dynkin diagrams
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 39
EP  - 43
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a4/
LA  - en
ID  - ADM_2015_19_1_a4
ER  - 
%0 Journal Article
%A Vitaliy M. Bondarenko
%A Vitaliy V. Bondarenko
%A Viktoria A. Lisykevych
%A Yulia M. Pereguda
%T On a deformation diameter of Dynkin diagrams
%J Algebra and discrete mathematics
%D 2015
%P 39-43
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a4/
%G en
%F ADM_2015_19_1_a4
Vitaliy M. Bondarenko; Vitaliy V. Bondarenko; Viktoria A. Lisykevych; Yulia M. Pereguda. On a deformation diameter of Dynkin diagrams. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 39-43. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a4/

[1] V. M. Bondarenko, Yu. M. Pereguda, “On P-numbers of quadratic forms”, Proc. of the Institute of Mathematics of NAN of Ukraine, 6, Geometry, Topology, and their Applications:2 (2009), 474–477 | Zbl

[2] V. M. Bondarenko, V. V. Bondarenko, Yu. M. Pereguda, “Local deformations of positive-definite quadratic forms”, Ukrainian Math. J., 64:7 (2012), 1019–1035 (Russian) | DOI | MR | Zbl

[3] V. M. Bondarenko, “On types of local deformations of quadratic forms”, Algebra Discrete Math., 18:2 (2014), 163–170 | MR | Zbl