Kaluzhnin's representations of Sylow $p$-subgroups of automorphism groups of $p$-adic rooted trees
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns the Sylow $p$-subgroups of automorphism groups of level homogeneous rooted trees. We recall and summarize the results obtained by L. Kaluzhnin on the structure of Sylow $p$-subgroups of isometry groups of ultrametric Cantor $p$-spaces in terms of automorphism groups of rooted trees. Most of the paper should be viewed as a systematic topical survey, however we include some new ideas in last sections.
Keywords: Sylow $p$-subgroups of wreath products of groups, homogeneous rooted trees, automorphisms of trees.
@article{ADM_2015_19_1_a3,
     author = {Agnieszka Bier and Vitaliy Sushchansky},
     title = {Kaluzhnin's representations of {Sylow} $p$-subgroups of automorphism groups of $p$-adic rooted trees},
     journal = {Algebra and discrete mathematics},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a3/}
}
TY  - JOUR
AU  - Agnieszka Bier
AU  - Vitaliy Sushchansky
TI  - Kaluzhnin's representations of Sylow $p$-subgroups of automorphism groups of $p$-adic rooted trees
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 19
EP  - 38
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a3/
LA  - en
ID  - ADM_2015_19_1_a3
ER  - 
%0 Journal Article
%A Agnieszka Bier
%A Vitaliy Sushchansky
%T Kaluzhnin's representations of Sylow $p$-subgroups of automorphism groups of $p$-adic rooted trees
%J Algebra and discrete mathematics
%D 2015
%P 19-38
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a3/
%G en
%F ADM_2015_19_1_a3
Agnieszka Bier; Vitaliy Sushchansky. Kaluzhnin's representations of Sylow $p$-subgroups of automorphism groups of $p$-adic rooted trees. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 19-38. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a3/

[1] M. Abert, B. Virag, “Dimension and randomness in groups acting on rooted trees”, J. Amer. Math. Soc., 18 (2005), 157–192 | DOI | MR | Zbl

[2] L. Bartholdi, R. Grigorchuk, Z. S̆unic, “Branch groups”, Handbook of algebra, v. 3, North-Holland, Amsterdam, 2003, 989–1112 | DOI | MR

[3] Yu. Bodnarchuk, “Structure of the group of automorphisms of Sylow $p$-subgroup of symmetric group of degree $p^n$ ($p\neq 2$)”, Ukr. Math. Zh., 36:6 (1984), 688–694 | MR | Zbl

[4] T. Ceccherini-Silberstein, Yu. Leonov, F. Scarabotti, F. Tolli, “Generalized Kaloujnine groups, uniseriality and height of automorphisms”, Internat. J. Algebra Comput., 15:3 (2005), 503–527 | DOI | MR | Zbl

[5] R. Grigorchuk, “On Burnside's problem on periodic groups”, Funktsionalyi Analiz i ego Prilozheniya, 14 (1980), 53–54 (Russian) | MR | Zbl

[6] R. Grigorchuk, “Some problems of the dynamics of group actions on rooted trees”, Proc. Steklov Inst. Math., 273:1 (2011), 64–175 | DOI | MR | Zbl

[7] R. Grigorchuk, V. Nekrashevich, V. Sushchanskii, “Automata, dynamical systems, and groups”, Tr. Mat. Inst. Steklova, 231, 2000, 134–214 (Russian) | MR | Zbl

[8] L. Kaluzhnin, “Sur les $p$-groupes de Sylow de groupe symétrique du degré $p^m$”, C. R. Acad. Sci. Paris, 221 (1945), 222–224 | MR

[9] L. Kaluzhnin, “La structure du $p$-groupe de Sylow du groupe symétrique du degré $p^2$”, C. R. Acad. Sci. Paris, 222 (1946), 1424–1425 | MR

[10] L. Kaluzhnin, Sur les $p$-groupes de Sylow du groupe symétrique du degré $p^m$. (Suite centrale ascendante et descendante.), C. R. Acad. Sci. Paris, 223 (1946), 703–705 | MR

[11] L. Kaluzhnin, “Sur les $p$-groupes de Sylow du groupe symétrique de degré $p^m$. (Sous-groupes caractéristiques, sous-groupes parallélotopiques)”, C. R. Acad. Sci. Paris, 224 (1947), 253–255 | MR

[12] L. Kaluzhnin, “Sur le groupe $P_\infty$ des tableaux infinis”, C. R. Math. Rep. Acad. Sci., 224 (1947), 1097–1092 | MR

[13] L. Kaluzhnin, “La structure des $p$-groupes de Sylow des groupes symetriques finis”, Ann. Sci. l'Ecole Norm. Sup., 65 (1948), 239–276 | MR

[14] L. Kaluzhnin, “On a generalisation of Sylow $p$-subgroups of symmetric groups”, Acta Math. Acad. Sci. Hungar., 2 (1951), 197–221 (Russian) | DOI | MR

[15] L. Kaluzhnin, P. Beleckij, V. Fejnberg, Kranzprodukte, [Wreath products] With English, French and Russian summaries, Teubner Texts in Mathematics, 101, BSB B. G. Teubner, Verlagsgesellschaft, Leipzig, 1987 (German) | MR | Zbl

[16] M. Krasner, L. Kaluzhnin, “Produit complet des groupes de permutations et probleme d'extension de groupes. I”, Acta Sci. Math. Szeged, 13 (1950), 208–230 | MR | Zbl

[17] M. Krasner, L. Kaluzhnin, “Produit complet des groupes de permutations et probleme d'extension de groupes. II”, Acta Sci. Math. Szeged, 14 (1951), 39–66 | MR | Zbl

[18] P. Lentoudis, “Détermination du groupe des automorphismes du $p$-groupe de Sylow du groupe symétrique de degré $p^m$: l'idée de la méthode”, C. R. Math. Rep. Acad. Sci. Canada, 7 (1985), 67–71 | MR | Zbl

[19] P. Lentoudis, “Le groupe des automorphismes du $p$-groupe de Sylow du groupe symétrique de degré $p^m$: résultats”, C. R. Math. Rep. Acad. Sci. Canada, 7 (1985), 133–136 | MR | Zbl

[20] P. Lentoudis, “Le groupe des automorphismes isométriques du groupe $P_\infty$ des tableaux de rang infini”, C. R. Math. Rep. Acad. Sci. Canada, 7:4 (1985), 233–237 | MR | Zbl

[21] S. Sidki, Regular trees and their automorphisms, IMPA, Rio de Janeiro, 1998 | MR | Zbl

[22] V. I. Sushchansky, Representation of residually finite $p$-groups by isometries of the space of $p$-adic integers, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 5 (1986), 23–26 | MR