Type of a point in Universal Geometry and in Model Theory
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 87-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to relations between model theoretic types and logically geometric types. We show that the notion of isotypic algebras can be equally defined through $MT$-types and $LG$-types.
Keywords: type of a point, universal algebraic geometry, logical geometry, multi-sorted algebra, Halmos algebra.
Mots-clés : affine space
@article{ADM_2015_19_1_a10,
     author = {B. Plotkin and E. Plotkin and G. Zhitomirskii},
     title = {Type of a point in {Universal} {Geometry} and in {Model} {Theory}},
     journal = {Algebra and discrete mathematics},
     pages = {87--100},
     year = {2015},
     volume = {19},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/}
}
TY  - JOUR
AU  - B. Plotkin
AU  - E. Plotkin
AU  - G. Zhitomirskii
TI  - Type of a point in Universal Geometry and in Model Theory
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 87
EP  - 100
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/
LA  - en
ID  - ADM_2015_19_1_a10
ER  - 
%0 Journal Article
%A B. Plotkin
%A E. Plotkin
%A G. Zhitomirskii
%T Type of a point in Universal Geometry and in Model Theory
%J Algebra and discrete mathematics
%D 2015
%P 87-100
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/
%G en
%F ADM_2015_19_1_a10
B. Plotkin; E. Plotkin; G. Zhitomirskii. Type of a point in Universal Geometry and in Model Theory. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/

[1] C. C. Chang, H. Keisler, Model Theory, North-Holland Publishing Company, 1973 | MR | Zbl

[2] P. R. Halmos, Algebraic logic, New York, 1969

[3] W. Hodges, A Shorter Model Theory, Cambridge University Press, 1977 | MR

[4] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | MR | Zbl

[5] D. Marker, Model Theory: An Introduction, Springer Verlag, 2002, 360 pp. | MR | Zbl

[6] B. Plotkin, Universal algebra, algebraic logic and databases, Kluwer Acad. Publ., 1994 | MR | Zbl

[7] B.Plotkin, Seven lectures on the universal algebraic geometry, Preprint, 2002, 87 pp., arXiv: 0204245 [math.GM]

[8] B. Plotkin, “Algebras with the same algebraic geometry”, Proceedings of the Steklov Institute of Mathematics, 242, MIAN, 2003, 176–207 | MR

[9] B. Plotkin, “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Siberian Advanced Mathematics, 7:2 (1997), 64–97 | MR | Zbl

[10] Journal of Math. Sciences, 137:5 (2006), 5049–5097, arXiv: http://arxiv.org/abs/math.GM/0312485 | DOI | MR | Zbl

[11] B. Plotkin, “Algebraic logic and logical geometry in arbitrary varieties of algebras”, Proceedings of the Conf. on Group Theory, Combinatorics and Computing, AMS Contemporary Math series, 611, 2014, 151–167 | DOI | MR | Zbl

[12] B. Plotkin, E. Aladova, E. Plotkin, “Algebraic logic and logically-geometric types in varieties of algebras”, Journal of Algebra and its Applications, 12:2 (2013), Paper No. 1250146, 23 pp. | DOI | MR | Zbl

[13] B. Plotkin, E. Plotkin, “Multi-sorted logic and logical geometry: some problems”, Demonstratio Mathematica, 14:48 (2015) (to appear) | MR

[14] St. Peterburg Math. J., 19:5 (2008), 859–879 | MR

[15] G. Zhitomirski, On logically-geometric types of algebras, preprint, arXiv: 1202.5417v1 [math.LO]