Type of a point in Universal Geometry and in Model Theory
Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to relations between model theoretic types and logically geometric types. We show that the notion of isotypic algebras can be equally defined through $MT$-types and $LG$-types.
Keywords: type of a point, universal algebraic geometry, logical geometry, multi-sorted algebra, Halmos algebra.
Mots-clés : affine space
@article{ADM_2015_19_1_a10,
     author = {B. Plotkin and E. Plotkin and G. Zhitomirskii},
     title = {Type of a point in {Universal} {Geometry} and in {Model} {Theory}},
     journal = {Algebra and discrete mathematics},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/}
}
TY  - JOUR
AU  - B. Plotkin
AU  - E. Plotkin
AU  - G. Zhitomirskii
TI  - Type of a point in Universal Geometry and in Model Theory
JO  - Algebra and discrete mathematics
PY  - 2015
SP  - 87
EP  - 100
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/
LA  - en
ID  - ADM_2015_19_1_a10
ER  - 
%0 Journal Article
%A B. Plotkin
%A E. Plotkin
%A G. Zhitomirskii
%T Type of a point in Universal Geometry and in Model Theory
%J Algebra and discrete mathematics
%D 2015
%P 87-100
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/
%G en
%F ADM_2015_19_1_a10
B. Plotkin; E. Plotkin; G. Zhitomirskii. Type of a point in Universal Geometry and in Model Theory. Algebra and discrete mathematics, Tome 19 (2015) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/ADM_2015_19_1_a10/

[1] C. C. Chang, H. Keisler, Model Theory, North-Holland Publishing Company, 1973 | MR | Zbl

[2] P. R. Halmos, Algebraic logic, New York, 1969

[3] W. Hodges, A Shorter Model Theory, Cambridge University Press, 1977 | MR

[4] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | MR | Zbl

[5] D. Marker, Model Theory: An Introduction, Springer Verlag, 2002, 360 pp. | MR | Zbl

[6] B. Plotkin, Universal algebra, algebraic logic and databases, Kluwer Acad. Publ., 1994 | MR | Zbl

[7] B.Plotkin, Seven lectures on the universal algebraic geometry, Preprint, 2002, 87 pp., arXiv: 0204245 [math.GM]

[8] B. Plotkin, “Algebras with the same algebraic geometry”, Proceedings of the Steklov Institute of Mathematics, 242, MIAN, 2003, 176–207 | MR

[9] B. Plotkin, “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Siberian Advanced Mathematics, 7:2 (1997), 64–97 | MR | Zbl

[10] Journal of Math. Sciences, 137:5 (2006), 5049–5097, arXiv: http://arxiv.org/abs/math.GM/0312485 | DOI | MR | Zbl

[11] B. Plotkin, “Algebraic logic and logical geometry in arbitrary varieties of algebras”, Proceedings of the Conf. on Group Theory, Combinatorics and Computing, AMS Contemporary Math series, 611, 2014, 151–167 | DOI | MR | Zbl

[12] B. Plotkin, E. Aladova, E. Plotkin, “Algebraic logic and logically-geometric types in varieties of algebras”, Journal of Algebra and its Applications, 12:2 (2013), Paper No. 1250146, 23 pp. | DOI | MR | Zbl

[13] B. Plotkin, E. Plotkin, “Multi-sorted logic and logical geometry: some problems”, Demonstratio Mathematica, 14:48 (2015) (to appear) | MR

[14] St. Peterburg Math. J., 19:5 (2008), 859–879 | MR

[15] G. Zhitomirski, On logically-geometric types of algebras, preprint, arXiv: 1202.5417v1 [math.LO]