On elements of high order in general finite fields
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 295-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Gao's construction gives for any finite field $F_{q^{n}}$ elements with the multiplicative order at least $\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}$, where $d=\left\lceil 2\log _{q} n\right\rceil$, $t=\left\lfloor \log _{d} n\right\rfloor$.
Keywords: finite field, Diophantine inequality.
Mots-clés : multiplicative order
@article{ADM_2014_18_2_a9,
     author = {Roman Popovych},
     title = {On elements of high order in general finite fields},
     journal = {Algebra and discrete mathematics},
     pages = {295--300},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/}
}
TY  - JOUR
AU  - Roman Popovych
TI  - On elements of high order in general finite fields
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 295
EP  - 300
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/
LA  - en
ID  - ADM_2014_18_2_a9
ER  - 
%0 Journal Article
%A Roman Popovych
%T On elements of high order in general finite fields
%J Algebra and discrete mathematics
%D 2014
%P 295-300
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/
%G en
%F ADM_2014_18_2_a9
Roman Popovych. On elements of high order in general finite fields. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 295-300. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/

[1] O. Ahmadi, I. E. Shparlinski, J. F. Voloch, “Multiplicative order of Gauss periods”, Int. J. Number Theory, 6:4 (2010), 877–882 | DOI | MR | Zbl

[2] Q. Cheng, “On the construction of finite field elements of large order”, Finite Fields Appl., 11:3 (2005), 358–366 | DOI | MR | Zbl

[3] Q. Cheng, S. Gao, D. Wan, “Constructing high order elements through subspace polynomials”, Discrete algorithms: Proc. 23rd ACM-SIAM Symp. (Kyoto, Japan, 17–19 January 2012), Omnipress, Philadelphia, USA, 2011, 1457–1463 | MR

[4] A. Conflitti, “On elements of high order in finite fields”, Cryptography and computational number theory: Proc. Workshop (Singapore, 22–26 November 1999), Birkhauser, Basel, 2001, 11–14 | DOI | MR | Zbl

[5] S. Gao, “Elements of provable high orders in finite fields”, Proc. Amer. Math. Soc., 127:6 (1999), 1615–1623 | DOI | MR | Zbl

[6] J. von zur Gathen, I. E. Shparlinski, “Orders of Gauss periods in finite fields”, Appl. Algebra Engrg. Comm. Comput., 9:1 (1998), 15–24 | DOI | MR | Zbl

[7] J. von zur Gathen, I. E. Shparlinski, “Gauss periods in finite fields”, Finite Fields and their Applications: Proc. 5th Conf. (Ausburg, Germany, 2–6 August 1999), Springer, Berlin, 2001, 162–177 | MR | Zbl

[8] M.-D.Huang, A. K. Narayanan, Finding primitive elements in finite fields of small characteristic, 2013, arXiv: 1304.1206 | MR

[9] T. A. Lambe, “Bounds on the Number of Feasible Solutions to a Knapsack Problem”, SIAM J. Applied Math., 26:2 (1974), 302–305 | DOI | MR | Zbl

[10] R. Popovych, “Elements of high order in finite fields of the form $F_{q}[x]/\Phi_{r}(x)$”, Finite Fields Appl., 18:4 (2012), 700–710 | DOI | MR | Zbl

[11] R. Popovych, “Elements of high order in finite fields of the form $F_{q}[x]/(x^{m}-a)$”, Finite Fields Appl., 19:1 (2013), 86–92 | DOI | MR | Zbl

[12] J. F. Voloch, “On the order of points on curves over finite fields”, Integers, 7 (2007), A49 | MR | Zbl

[13] J. F. Voloch, “Elements of high order on finite fields from elliptic curves”, Bull. Austral. Math. Soc., 81:3 (2010), 425–429 | DOI | MR | Zbl