On elements of high order in general finite fields
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 295-300

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Gao's construction gives for any finite field $F_{q^{n}}$ elements with the multiplicative order at least $\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}$, where $d=\left\lceil 2\log _{q} n\right\rceil$, $t=\left\lfloor \log _{d} n\right\rfloor$.
Keywords: finite field, Diophantine inequality.
Mots-clés : multiplicative order
@article{ADM_2014_18_2_a9,
     author = {Roman Popovych},
     title = {On elements of high order in general finite fields},
     journal = {Algebra and discrete mathematics},
     pages = {295--300},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/}
}
TY  - JOUR
AU  - Roman Popovych
TI  - On elements of high order in general finite fields
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 295
EP  - 300
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/
LA  - en
ID  - ADM_2014_18_2_a9
ER  - 
%0 Journal Article
%A Roman Popovych
%T On elements of high order in general finite fields
%J Algebra and discrete mathematics
%D 2014
%P 295-300
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/
%G en
%F ADM_2014_18_2_a9
Roman Popovych. On elements of high order in general finite fields. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 295-300. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a9/