The endomorphisms monoids of graphs of order $n$ with a minimum degree $n-3$
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 274-294

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the endomorphism monoids, $\operatorname{End}(G)$, of the generalized graphs $G$ of order $n$ with a minimum degree $n-3$. Criteria for regularity, orthodoxy and complete regularity of those monoids based on the structure of $G$ are given.
Keywords: graph of order $n$ which minimal degree $n-3$, regular, completely regular.
Mots-clés : graph endomorphism, orthodox
@article{ADM_2014_18_2_a8,
     author = {Nirutt Pipattanajinda and Ulrich Knauer and Boyko Gyurov and Sayan Panma},
     title = {The endomorphisms monoids of graphs of order $n$ with a minimum degree $n-3$},
     journal = {Algebra and discrete mathematics},
     pages = {274--294},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a8/}
}
TY  - JOUR
AU  - Nirutt Pipattanajinda
AU  - Ulrich Knauer
AU  - Boyko Gyurov
AU  - Sayan Panma
TI  - The endomorphisms monoids of graphs of order $n$ with a minimum degree $n-3$
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 274
EP  - 294
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a8/
LA  - en
ID  - ADM_2014_18_2_a8
ER  - 
%0 Journal Article
%A Nirutt Pipattanajinda
%A Ulrich Knauer
%A Boyko Gyurov
%A Sayan Panma
%T The endomorphisms monoids of graphs of order $n$ with a minimum degree $n-3$
%J Algebra and discrete mathematics
%D 2014
%P 274-294
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a8/
%G en
%F ADM_2014_18_2_a8
Nirutt Pipattanajinda; Ulrich Knauer; Boyko Gyurov; Sayan Panma. The endomorphisms monoids of graphs of order $n$ with a minimum degree $n-3$. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 274-294. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a8/