A nilpotent non abelian group code
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 268-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper reports an example for a nilpotent group code which is not monomially equivalent to some abelian group code.
Keywords: group ring codes, nilpotent groups.
Mots-clés : monomial equivalence
@article{ADM_2014_18_2_a7,
     author = {Gabriele Nebe and Artur Sch\"afer},
     title = {A nilpotent non abelian group code},
     journal = {Algebra and discrete mathematics},
     pages = {268--273},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/}
}
TY  - JOUR
AU  - Gabriele Nebe
AU  - Artur Schäfer
TI  - A nilpotent non abelian group code
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 268
EP  - 273
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/
LA  - en
ID  - ADM_2014_18_2_a7
ER  - 
%0 Journal Article
%A Gabriele Nebe
%A Artur Schäfer
%T A nilpotent non abelian group code
%J Algebra and discrete mathematics
%D 2014
%P 268-273
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/
%G en
%F ADM_2014_18_2_a7
Gabriele Nebe; Artur Schäfer. A nilpotent non abelian group code. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 268-273. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/

[1] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4. 5.6, 2012 http://www.gap-system.org

[2] Wieb Bosma, John Cannon, and Catherine Playoust, “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[3] J. J. Bernal, A. del Rio, J. J. Simon, “An intrinsical description of group codes”, Designs, Codes and Cryptography, 51 (2009), 289–300 | DOI | MR | Zbl

[4] C. Garcıa Pillado, S. Gonzalez, V. T. Markov, C. Martınez, A. A. Nechaev, “When are all group codes of a noncommutative group Abelian (a computational approach)?”, Fundamentalnaya i prikladnaya matematika, 17 (2011/2012), 75–85 | MR

[5] W. Lütkebohmert, Codierungstheorie, Vieweg, 2003 | MR | Zbl

[6] F. J. MacWilliams, “Codes and ideals in group algebras”, Combinatorial Mathematics and its Applications, Proc. Conf. (Univ. North Carolina, Chapel Hill, N. C. 1967), Univ. North Carolina Press, Chapel Hill, N. C., 1969, 317-328 | MR | Zbl