Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_2_a7, author = {Gabriele Nebe and Artur Sch\"afer}, title = {A nilpotent non abelian group code}, journal = {Algebra and discrete mathematics}, pages = {268--273}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/} }
Gabriele Nebe; Artur Schäfer. A nilpotent non abelian group code. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 268-273. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a7/
[1] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4. 5.6, 2012 http://www.gap-system.org
[2] Wieb Bosma, John Cannon, and Catherine Playoust, “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[3] J. J. Bernal, A. del Rio, J. J. Simon, “An intrinsical description of group codes”, Designs, Codes and Cryptography, 51 (2009), 289–300 | DOI | MR | Zbl
[4] C. Garcıa Pillado, S. Gonzalez, V. T. Markov, C. Martınez, A. A. Nechaev, “When are all group codes of a noncommutative group Abelian (a computational approach)?”, Fundamentalnaya i prikladnaya matematika, 17 (2011/2012), 75–85 | MR
[5] W. Lütkebohmert, Codierungstheorie, Vieweg, 2003 | MR | Zbl
[6] F. J. MacWilliams, “Codes and ideals in group algebras”, Combinatorial Mathematics and its Applications, Proc. Conf. (Univ. North Carolina, Chapel Hill, N. C. 1967), Univ. North Carolina Press, Chapel Hill, N. C., 1969, 317-328 | MR | Zbl