Exponent matrices and Frobenius rings
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 186-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation $\sigma \in S_{n}$ there exists a countable set of indecomposable Frobenius semidistributive rings $A_{m}$ with Nakayama permutation $ \sigma$.
Keywords: exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring.
@article{ADM_2014_18_2_a3,
     author = {M. A. Dokuchaev and M. V. Kasyanuk and M. A. Khibina and V. V. Kirichenko},
     title = {Exponent matrices and {Frobenius} rings},
     journal = {Algebra and discrete mathematics},
     pages = {186--202},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/}
}
TY  - JOUR
AU  - M. A. Dokuchaev
AU  - M. V. Kasyanuk
AU  - M. A. Khibina
AU  - V. V. Kirichenko
TI  - Exponent matrices and Frobenius rings
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 186
EP  - 202
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/
LA  - en
ID  - ADM_2014_18_2_a3
ER  - 
%0 Journal Article
%A M. A. Dokuchaev
%A M. V. Kasyanuk
%A M. A. Khibina
%A V. V. Kirichenko
%T Exponent matrices and Frobenius rings
%J Algebra and discrete mathematics
%D 2014
%P 186-202
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/
%G en
%F ADM_2014_18_2_a3
M. A. Dokuchaev; M. V. Kasyanuk; M. A. Khibina; V. V. Kirichenko. Exponent matrices and Frobenius rings. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 186-202. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/

[1] Kirichenko V. V., “On semiperfect rings of injective dimension one”, Sao Paulo J. Math. Sci., 1:1 (2007), 111–132 | DOI | MR | Zbl

[2] Denes J., Keedwell A. D., Latin square and their applications, Academic Press, New York–London, 1974, 547 pp. | MR

[3] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, rings and modules, v. 2, Mathematics and Its Applications (Springer), 586, Springer, Dordrecht, 2007, xii+400 pp. | DOI | MR | Zbl

[4] Dokuchaev M. A., Kirichenko V. V., Zelensky A. V., Zhuravlev V. N., “Gorenstein matrices”, Algebra and Discrete Math., 2005, no. 1, 8–29 | MR | Zbl

[5] Hopkiins C., “Rings with minimal condition for left ideals”, Ann. of Mathematics, 40 (1939), 712–730 | DOI | MR

[6] Levitzki J., “On ring, which satisfy the minimum condition for right-hand ideals”, Compositto Math., 7 (1939), 214–222 | MR

[7] Jategaonkar V. A., “Global dimension of tiled orders over a discrete valuation ring”, Trans. Amer. Math. Soc., 196 (1974), 313–330 | DOI | MR | Zbl

[8] Tarsy R. B., “Global dimension of orders”, Trans. Amer. Math. Soc., 151 (1970), 335–340 | DOI | MR | Zbl

[9] Faith C., Algebra, v. II, Ring Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[10] Hazewinkel M., Gubareni N. and Kirichenko V. V., Algebras, Rings and Modules, v. I, Mathematics and Its Applications, 575, Kluwer Academic Publishers, 2004, 380 pp. | MR | Zbl