Exponent matrices and Frobenius rings
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 186-202

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of results connecting the exponent matrices with Frobenius rings. In particular, we prove that for any parmutation $\sigma \in S_{n}$ there exists a countable set of indecomposable Frobenius semidistributive rings $A_{m}$ with Nakayama permutation $ \sigma$.
Keywords: exponent matrix, Frobenius ring, distributive module, quiver of semiperfect ring.
@article{ADM_2014_18_2_a3,
     author = {M. A. Dokuchaev and M. V. Kasyanuk and M. A. Khibina and V. V. Kirichenko},
     title = {Exponent matrices and {Frobenius} rings},
     journal = {Algebra and discrete mathematics},
     pages = {186--202},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/}
}
TY  - JOUR
AU  - M. A. Dokuchaev
AU  - M. V. Kasyanuk
AU  - M. A. Khibina
AU  - V. V. Kirichenko
TI  - Exponent matrices and Frobenius rings
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 186
EP  - 202
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/
LA  - en
ID  - ADM_2014_18_2_a3
ER  - 
%0 Journal Article
%A M. A. Dokuchaev
%A M. V. Kasyanuk
%A M. A. Khibina
%A V. V. Kirichenko
%T Exponent matrices and Frobenius rings
%J Algebra and discrete mathematics
%D 2014
%P 186-202
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/
%G en
%F ADM_2014_18_2_a3
M. A. Dokuchaev; M. V. Kasyanuk; M. A. Khibina; V. V. Kirichenko. Exponent matrices and Frobenius rings. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 186-202. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a3/