Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_2_a0, author = {Orest D. Artemovych and Kamil Kular}, title = {On the {Lie} ring of derivations of a semiprime ring}, journal = {Algebra and discrete mathematics}, pages = {157--162}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/} }
Orest D. Artemovych; Kamil Kular. On the Lie ring of derivations of a semiprime ring. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 157-162. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/
[1] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, Mathematical Association of America, Washington, 1996 | MR | Zbl
[2] K. Kular, “Semiprime rings with nilpotent Lie ring of inner derivations”, Ann. Univ. Paedagog. Crac. Stud. Math. (to appear) | MR
[3] J. Li, X. Du, “Pairwise commuting derivations of polynomial rings”, Linear Algebra Appl., 436 (2012), 2375–2379 | DOI | MR | Zbl
[4] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 275–279 | DOI | MR | Zbl
[5] A. P. Petravchuk, “On pairs of commuting derivations of the polynomial ring in one or two variables”, Linear Algebra Appl., 433 (2010), 574–579 | DOI | MR | Zbl