On the Lie ring of derivations of a semiprime ring
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 157-162
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the Lie ring of derivations of a semiprime ring is either trivial or non-nilpotent.
Keywords:
semiprime ring, nilpotent Lie ring, derivation.
@article{ADM_2014_18_2_a0,
author = {Orest D. Artemovych and Kamil Kular},
title = {On the {Lie} ring of derivations of a semiprime ring},
journal = {Algebra and discrete mathematics},
pages = {157--162},
year = {2014},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/}
}
Orest D. Artemovych; Kamil Kular. On the Lie ring of derivations of a semiprime ring. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 157-162. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/
[1] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, Mathematical Association of America, Washington, 1996 | MR | Zbl
[2] K. Kular, “Semiprime rings with nilpotent Lie ring of inner derivations”, Ann. Univ. Paedagog. Crac. Stud. Math. (to appear) | MR
[3] J. Li, X. Du, “Pairwise commuting derivations of polynomial rings”, Linear Algebra Appl., 436 (2012), 2375–2379 | DOI | MR | Zbl
[4] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 275–279 | DOI | MR | Zbl
[5] A. P. Petravchuk, “On pairs of commuting derivations of the polynomial ring in one or two variables”, Linear Algebra Appl., 433 (2010), 574–579 | DOI | MR | Zbl