On the Lie ring of derivations of a semiprime ring
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 157-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Lie ring of derivations of a semiprime ring is either trivial or non-nilpotent.
Keywords: semiprime ring, nilpotent Lie ring, derivation.
@article{ADM_2014_18_2_a0,
     author = {Orest D. Artemovych and Kamil Kular},
     title = {On the {Lie} ring of derivations of a semiprime ring},
     journal = {Algebra and discrete mathematics},
     pages = {157--162},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/}
}
TY  - JOUR
AU  - Orest D. Artemovych
AU  - Kamil Kular
TI  - On the Lie ring of derivations of a semiprime ring
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 157
EP  - 162
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/
LA  - en
ID  - ADM_2014_18_2_a0
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%A Kamil Kular
%T On the Lie ring of derivations of a semiprime ring
%J Algebra and discrete mathematics
%D 2014
%P 157-162
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/
%G en
%F ADM_2014_18_2_a0
Orest D. Artemovych; Kamil Kular. On the Lie ring of derivations of a semiprime ring. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 157-162. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a0/

[1] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, Mathematical Association of America, Washington, 1996 | MR | Zbl

[2] K. Kular, “Semiprime rings with nilpotent Lie ring of inner derivations”, Ann. Univ. Paedagog. Crac. Stud. Math. (to appear) | MR

[3] J. Li, X. Du, “Pairwise commuting derivations of polynomial rings”, Linear Algebra Appl., 436 (2012), 2375–2379 | DOI | MR | Zbl

[4] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 275–279 | DOI | MR | Zbl

[5] A. P. Petravchuk, “On pairs of commuting derivations of the polynomial ring in one or two variables”, Linear Algebra Appl., 433 (2010), 574–579 | DOI | MR | Zbl