On closures in semitopological inverse semigroups with continuous inversion
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 59-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the closures of subgroups, semilattices and different kinds of semigroup extensions in semitopological inverse semigroups with continuous inversion. In particularly we show that a topological group $G$ is $H$-closed in the class of semitopological inverse semigroups with continuous inversion if and only if $G$ is compact, a Hausdorff linearly ordered topological semilattice $E$ is $H$-closed in the class of semitopological semilattices if and only if $E$ is $H$-closed in the class of topological semilattices, and a topological Brandt $\lambda^0$-extension of $S$ is (absolutely) $H$-closed in the class of semitopological inverse semigroups with continuous inversion if and only if so is $S$. Also, we construct an example of an $H$-closed non-absolutely $H$-closed semitopological semilattice in the class of semitopological semilattices.
Keywords: semigroup, semitopological semigroup, topological Brandt $\lambda^0$-extension, inverse semigroup, quasitopological group, topological group, semilattice, closure, $H$-closed, absolutely $H$-closed.
@article{ADM_2014_18_1_a7,
     author = {Oleg Gutik},
     title = {On closures in semitopological inverse semigroups with continuous inversion},
     journal = {Algebra and discrete mathematics},
     pages = {59--85},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a7/}
}
TY  - JOUR
AU  - Oleg Gutik
TI  - On closures in semitopological inverse semigroups with continuous inversion
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 59
EP  - 85
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a7/
LA  - en
ID  - ADM_2014_18_1_a7
ER  - 
%0 Journal Article
%A Oleg Gutik
%T On closures in semitopological inverse semigroups with continuous inversion
%J Algebra and discrete mathematics
%D 2014
%P 59-85
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a7/
%G en
%F ADM_2014_18_1_a7
Oleg Gutik. On closures in semitopological inverse semigroups with continuous inversion. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 59-85. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a7/

[1] A. D. Aleksandrov, “On an extension of Hausdorff space to $H$-closed”, Dokl. Akad. Nauk SSSR, 37 (1942), 138–141 (in Russian)

[2] A. Arhangel'skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, 2008 | MR | Zbl

[3] S. Bardyla and O. Gutik, “On $\mathscr{H}$-complete topological semilattices”, Mat. Stud., 38:2 (2012), 118–123 | MR | Zbl

[4] T. Berezovski, O. Gutik, and K. Pavlyk, “Brandt extensions and primitive topological inverse semigroups”, Int. J. Math. Math. Sci., 2010 (2010), Article ID 671401, 13 pp. | DOI | MR | Zbl

[5] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, v. I, Marcell Dekker, Inc., New York and Basel, 1983 ; v. II, 1986 | MR | Zbl

[6] I. Chuchman and O. Gutik, “On $H$-closed topological semigroups and semilattices”, Algebra Discr. Math., 2007, no. 1, 13–23 | MR

[7] A. H. Clifford, “Matrix representations of completely simple semigroups”, Amer. J. Math., 64 (1942), 327–342 | DOI | MR | Zbl

[8] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, v. I, Amer. Math. Soc. Surveys, 7, Providence, R.I., 1961 ; v. II, 1967 | MR | Zbl

[9] D. N. Dikranjan and V. V. Uspenskij, “Categorically compact topological groups”, J. Pure Appl. Algebra, 126 (1998), 149–168 | DOI | MR | Zbl

[10] C. Eberhart and J. Selden, “On the closure of the bicyclic semigroup”, Trans. Amer. Math. Soc., 144 (1969), 115–126 | DOI | MR | Zbl

[11] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989 | MR | Zbl

[12] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[13] O. V. Gutik, “On Howie semigroup”, Mat. Metody Phis.-Mech. Polya, 42:4 (1999), 127–132 (in Ukrainian) | MR | Zbl

[14] O. Gutik, D. Pagon and D. Repov̌s, “On chains in H-closed topological pospaces”, Order, 27:1 (2010), 69–81 | DOI | MR | Zbl

[15] O. V. Gutik and K. P. Pavlyk, “H-closed topological semigroups and Brandt $\lambda$-extensions”, Mat. Metody Phis.-Mech. Polya, 44:3 (2001), 20–28 (in Ukrainian) | MR | Zbl

[16] O. Gutik and K. Pavlyk, “Topological Brandt $\lambda$-extensions of absolutely $H$-closed topological inverse semigroups”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 61 (2003), 98–105 | Zbl

[17] O. V. Gutik and K. P. Pavlyk, “On topological semigroups of matrix units”, Semigroup Forum, 71:3 (2005), 389–400 | DOI | MR | Zbl

[18] O. V. Gutik and K. P. Pavlyk, “Topological semigroups of matrix units”, Algebra Discr. Math., 2005, no. 3, 1–17 | MR | Zbl

[19] O. V. Gutik and K. P. Pavlyk, “On Brandt $\lambda^0$-extensions of semigroups with zero”, Mat. Metody Phis.-Mech. Polya, 49:3 (2006), 26–40 | MR | Zbl

[20] O. Gutik and K. Pavlyk, “On pseudocompact topological Brandt $\lambda^0$-extensions of semitopological monoids”, Topological Algebra and its Applications, 1 (2013), 60–79 | DOI | Zbl

[21] O. Gutik, K. Pavlyk, and A. Reiter, “Topological semigroups of matrix units and countably compact Brandt $\lambda^0$-extensions”, Mat. Stud., 32:2 (2009), 115–131 | MR | Zbl

[22] O. Gutik and O. Ravsky, On pseudocompact inverse primitive (semi)topological semigroups, Preprint, arXiv: 1310.4313

[23] O. Gutik and D. Repovš, “On linearly ordered $H$-closed topological semilattices”, Semigroup Forum, 77:3 (2008), 474–481 | DOI | MR | Zbl

[24] O. Gutik and D. Repovš, “On Brandt $\lambda^0$-extensions of monoids with zero”, Semigroup Forum, 80:1 (2010), 8–32 | DOI | MR | Zbl

[25] W. D. Munn, “Matrix representations of semigroups”, Proc. Cambridge Phil. Soc., 53 (1957), 5–12 | DOI | MR | Zbl

[26] K. P. Pavlyk, “Absolutely $H$-closed topological semigroups and Brandt $\lambda$-extensions”, Appl. Problems Mech. Math., 2 (2004), 61–68 (in Ukrainian)

[27] M. Petrich, Inverse Semigroups, John Wiley $\$ Sons, New York, 1984 | MR | Zbl

[28] D. A. Raikov, “On a completion of topological groups”, Izv. Akad. Nauk SSSR, 10 (1946), 513–528 | MR | Zbl

[29] O. Ravsky, “On $H$-closed paratopological groups”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 61 (2003), 172–179 | Zbl

[30] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin, 1984 | MR | Zbl

[31] J. W. Stepp, “A note on maximal locally compact semigroups”, Proc. Amer. Math. Soc., 20 (1969), 251–253 | DOI | MR | Zbl

[32] J. W. Stepp, “Algebraic maximal semilattices”, Pacific J. Math., 58:1 (1975), 243–248 | DOI | MR | Zbl

[33] L. E. Ward, Jr., “Partially ordered topological spaces”, Proc. Amer. Math. Soc., 5:1 (1954), 144–161 | DOI | MR