$\mathscr{L}$-cross-sections of the finite symmetric semigroup
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 27-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we give the description of all $\mathscr{L}$-cross-sections of the finite symmetric semigroup.
Keywords: symmetric semigroup, cross-section, Green's relations.
@article{ADM_2014_18_1_a4,
     author = {Eugenja Bondar},
     title = {$\mathscr{L}$-cross-sections of the finite symmetric semigroup},
     journal = {Algebra and discrete mathematics},
     pages = {27--41},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a4/}
}
TY  - JOUR
AU  - Eugenja Bondar
TI  - $\mathscr{L}$-cross-sections of the finite symmetric semigroup
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 27
EP  - 41
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a4/
LA  - en
ID  - ADM_2014_18_1_a4
ER  - 
%0 Journal Article
%A Eugenja Bondar
%T $\mathscr{L}$-cross-sections of the finite symmetric semigroup
%J Algebra and discrete mathematics
%D 2014
%P 27-41
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a4/
%G en
%F ADM_2014_18_1_a4
Eugenja Bondar. $\mathscr{L}$-cross-sections of the finite symmetric semigroup. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 27-41. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a4/

[1] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Springer-Verlag, 2009, 317 pp. | MR | Zbl

[2] A. Clifford, G. Preston, The algebraic theory of semigroups, Mir, 1972, 278 pp. (In Russian) | MR

[3] L. Renner, “Analogue of the Bruhat decomposition for algebraic monoids II”, Journal of Algebra, 101:2 (1986), 303–338 | DOI | MR | Zbl

[4] D. Cowan, N. Reilly, “Partial cross-sections of symmetric inverse semigroups”, International Journal of Algebra and Computation, 5:3 (1995), 259–287 | DOI | MR | Zbl

[5] O. Ganyushkin, V. Mazorchuk, “$\mathscr{L}$- and $\mathscr{R}$-cross-sections in $\mathscr{IS}_n$,”, Communications in Algebra, 31:9 (2003), 4507–5423 | DOI | MR

[6] V. Pekhterev, “Idempotent $\mathscr{D}$-cross-sections of the finite inverse symmetric semigroup $IS_n$,”, Algebra discrete math., 2008, no. 3, 84–87 | MR

[7] V. Pekhterev, “$\mathscr{H}$-, $\mathscr{R}$- and $\mathscr{L}$-cross-sections of the infinite symmetric inverse semigroup”, Algebra discrete math., 2005, no. 1, 92–104 | MR

[8] Yu. V. Zhuchok, “Cross-sections of Green's relations in a symmetric inverse 0-category”, Algebra Logika, 51:4 (2012), 458–475 (In Russian) | DOI | MR | Zbl

[9] G. Kudryavtseva, V. Maltcev, V. Mazorchuk, “$\mathscr{L}$- and $\mathscr{R}$-cross-sections in the Brauer Semigroup”, U.U.D.M. Report, 2004, 43, Uppsala University, 2004, 1101–3591

[10] V. Pekhterev, “$\mathscr{H}$- and $\mathscr{R}$-cross-sections of the full finite semigroup $\mathscr{T}_n$”, Algebra discrete math., 2:3 (2003), 82–88 | MR

[11] I. B. Kozhuhov, “On transversals of the semigroup $T_n$ for the relation $\mathscr{L}$”, Kamyanets-Podolsky (July, 1–7), 2007, 110

[12] E. Bondar, “$\mathscr{L}$-, $\mathscr{R}$- and $\mathscr{H}$-cross-sections in strong endomorphism semigroup of graphs”, International Mathematical conference: abstracts of talks, Mykolayiv, 2012, 155