A new characterization of alternating groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 8-13
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and let $\pi_{e}(G)$ be the set of element orders
of $G $. Let $k \in \pi_{e}(G)$ and let $m_{k}$ be the number of elements of
order $k $ in $G$. Set $\mathrm{nse}(G):=\{ m_{k} | k \in \pi_{e}(G)\}$. In this
paper, we show that if $n = r$, $r +1 $, $r + 2$, $r + 3$ $r+4$, or $r + 5$
where $r\geq5$ is the greatest prime not exceeding $n$, then $A_{n}$
characterizable by nse and order.
Keywords:
finite group, alternating groups.
Mots-clés : simple group
Mots-clés : simple group
@article{ADM_2014_18_1_a2,
author = {Alireza Khalili Asboei and Syyed Sadegh Salehi Amiri and Ali Iranmanesh},
title = {A new characterization of alternating groups},
journal = {Algebra and discrete mathematics},
pages = {8--13},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/}
}
TY - JOUR AU - Alireza Khalili Asboei AU - Syyed Sadegh Salehi Amiri AU - Ali Iranmanesh TI - A new characterization of alternating groups JO - Algebra and discrete mathematics PY - 2014 SP - 8 EP - 13 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/ LA - en ID - ADM_2014_18_1_a2 ER -
Alireza Khalili Asboei; Syyed Sadegh Salehi Amiri; Ali Iranmanesh. A new characterization of alternating groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 8-13. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/