A new characterization of alternating groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 8-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and let $\pi_{e}(G)$ be the set of element orders of $G $. Let $k \in \pi_{e}(G)$ and let $m_{k}$ be the number of elements of order $k $ in $G$. Set $\mathrm{nse}(G):=\{ m_{k} | k \in \pi_{e}(G)\}$. In this paper, we show that if $n = r$, $r +1 $, $r + 2$, $r + 3$ $r+4$, or $r + 5$ where $r\geq5$ is the greatest prime not exceeding $n$, then $A_{n}$ characterizable by nse and order.
Keywords: finite group, alternating groups.
Mots-clés : simple group
@article{ADM_2014_18_1_a2,
     author = {Alireza Khalili Asboei and Syyed Sadegh Salehi Amiri and Ali Iranmanesh},
     title = {A new characterization of alternating groups},
     journal = {Algebra and discrete mathematics},
     pages = {8--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/}
}
TY  - JOUR
AU  - Alireza Khalili Asboei
AU  - Syyed Sadegh Salehi Amiri
AU  - Ali Iranmanesh
TI  - A new characterization of alternating groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 8
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/
LA  - en
ID  - ADM_2014_18_1_a2
ER  - 
%0 Journal Article
%A Alireza Khalili Asboei
%A Syyed Sadegh Salehi Amiri
%A Ali Iranmanesh
%T A new characterization of alternating groups
%J Algebra and discrete mathematics
%D 2014
%P 8-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/
%G en
%F ADM_2014_18_1_a2
Alireza Khalili Asboei; Syyed Sadegh Salehi Amiri; Ali Iranmanesh. A new characterization of alternating groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 8-13. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a2/

[1] A. K. Asboei, “A new characterization of $PGL_{2}(p)$”, J. Algebra Appl., 12:7 (2013) | DOI | MR

[2] A. K. Asboei, S. S. Amiri, “Characterization of the linear groups $L_{2}(p)$”, Southeast Asian Bull. Math., 38 (2014), 471–478 | MR

[3] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, “A characterization of Symmetric group $S_{r}$, where $r$ is prime number”, Ann. Math. Inform., 40 (2012), 13–23 | MR | Zbl

[4] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, “A new characterization of sporadic simple groups by NSE and order”, J. Algebra Appl., 12:2 (2013), 1–3 | DOI | MR

[5] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, “A new characterization of $A_{7}$ and $A_{8}$”, An. Stint. Univ. Ovidius Constanta Ser. Mat., 21:3 (2013), 43–50 | MR | Zbl

[6] C. G. Shao, W. Shi and Q. H. Jiang, “Characterization of simple $K_{4}$-groups”, Front Math, China, 3 (2008), 355–370 | DOI | MR | Zbl

[7] C. G. Shao and Q. H. Jiang, “A new characterization of some linear groups by NSE”, J. Alg. Appl. | DOI

[8] J. H. Conway, R. T. Curtis, S. P. Norton and R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985 | Zbl

[9] J. Bi, “Characteristic of Alternating Groups by Orders of Normalizers of Sylow Subgroups”, Algebra Colloq., 8:3 (2001), 249–256 | MR | Zbl

[10] R. Shen, C. G. Shao, Q. Jiang, W. Shi, V. Mazuro, “A new characterization of $A_{5}$”, Monatsh Math., 160 (2010), 337–341 | DOI | MR | Zbl

[11] V. D. Mazurov and E. I. Khukhro, Unsolved Problems in group theory, the Kourovka Notebook, 16 ed., Inst. Mat. Sibirsk. Otdel. Akad., Novosibirsk, 2006 | MR | Zbl