Effective ring
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 149-156

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Keywords: Bezout ring, exchange ring, clean ring, effective ring, elementary divisor ring, idempotent of stable range 1, neat ring.
@article{ADM_2014_18_1_a12,
     author = {B. V. Zabavsky and B. M. Kuznitska},
     title = {Effective ring},
     journal = {Algebra and discrete mathematics},
     pages = {149--156},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a12/}
}
TY  - JOUR
AU  - B. V. Zabavsky
AU  - B. M. Kuznitska
TI  - Effective ring
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 149
EP  - 156
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a12/
LA  - en
ID  - ADM_2014_18_1_a12
ER  - 
%0 Journal Article
%A B. V. Zabavsky
%A B. M. Kuznitska
%T Effective ring
%J Algebra and discrete mathematics
%D 2014
%P 149-156
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a12/
%G en
%F ADM_2014_18_1_a12
B. V. Zabavsky; B. M. Kuznitska. Effective ring. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 149-156. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a12/