Minimal non-$PC$-groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to prove that a non-perfect group $G$ is a minimal non-$PC$-group if and only if it is a minimal non-$FC$-group. It is shown that a perfect locally graded minimal non-$PC$-group is an indecomposable countable locally finite $p$-group.
Mots-clés : $PC$-group, $FC$-group.
@article{ADM_2014_18_1_a1,
     author = {Orest D. Artemovych},
     title = {Minimal non-$PC$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/}
}
TY  - JOUR
AU  - Orest D. Artemovych
TI  - Minimal non-$PC$-groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 1
EP  - 7
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/
LA  - en
ID  - ADM_2014_18_1_a1
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%T Minimal non-$PC$-groups
%J Algebra and discrete mathematics
%D 2014
%P 1-7
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/
%G en
%F ADM_2014_18_1_a1
Orest D. Artemovych. Minimal non-$PC$-groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/

[1] S. Franciosi, F. de Giovanni and M. J. Tomkinson, “Groups with polycyclic-by-finite conjugacy classes”, Boll. Unione Mat. Ital., 7 (1990), 35–55 | MR

[2] S. N. Chernikov, Groups with prescribed properties of groups, Nauka, Moscow, 1980 (Russian) | MR

[3] A. Yu. Ol'shanski\u{i}, Geometry of defining relations of groups, (Translated from the 1989 Russian original by Yu. A. Bakhturin), Mathematics and its Appl. (Soviet Series), 70, Kluwer Acad. Publ. Group, Dordrecht, 1991 | DOI | MR | Zbl

[4] V. V. Belyaev and N. F. Sesekin, “Infinite groups of Miller-Moreno type”, Acta Math. Acad. Sci. Hungaricae, 26 (1975), 369–376 (Russian) | DOI | MR | Zbl

[5] V. V. Belyaev, “Groups of the Miller-Moreno type”, Sibirsk. Mat. Ž., 19 (1978), 509–514 (Russian) | MR | Zbl

[6] V. V. Belyaev, “Minimal non-$FC$-groups”, Sixth All-Union Symposium on Group Theory (Čerkassy, 1978), Naukova Dumka, Kiev, 1980, 97–102 (Russian) | MR

[7] Siberian Math. J., 39 (1998), 1093–1095 | DOI | MR | Zbl

[8] F. Russo and N. Trabelsi, “On minimal non-$PC$-groups”, Annales Mathématiques Blase Pascal, 16 (2009), 277–286 | DOI | MR | Zbl

[9] B. Bruno and R. E. Phillips, “A note on groups with nilpotent-by-finite proper subgroups”, Archiv Math., 65 (1995), 369–374 | DOI | MR | Zbl

[10] M. Kuzucuoğlu and R. E. Phillips, “Locally finite minimal non-$FC$-groups”, Math. Proc. Cambridge Phil. Soc., 105 (1989), 417–420 | DOI | MR | Zbl

[11] F. Leinen, “A reduction theorem for perfect locally finite minimal non-$FC$ groups”, Glasgow Math. J., 41 (1999), 81–83 | DOI | MR | Zbl

[12] J. C. Lennox and D. J. S. Robinson, The Theory of Infinite Soluble Groups, Clarendon Press, Oxford, 2004 | MR | Zbl

[13] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Text in Math., 80, Springer-Verlag, New York, 1993 | MR