Minimal non-$PC$-groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 1-7

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to prove that a non-perfect group $G$ is a minimal non-$PC$-group if and only if it is a minimal non-$FC$-group. It is shown that a perfect locally graded minimal non-$PC$-group is an indecomposable countable locally finite $p$-group.
Mots-clés : $PC$-group, $FC$-group.
@article{ADM_2014_18_1_a1,
     author = {Orest D. Artemovych},
     title = {Minimal non-$PC$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/}
}
TY  - JOUR
AU  - Orest D. Artemovych
TI  - Minimal non-$PC$-groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 1
EP  - 7
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/
LA  - en
ID  - ADM_2014_18_1_a1
ER  - 
%0 Journal Article
%A Orest D. Artemovych
%T Minimal non-$PC$-groups
%J Algebra and discrete mathematics
%D 2014
%P 1-7
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/
%G en
%F ADM_2014_18_1_a1
Orest D. Artemovych. Minimal non-$PC$-groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a1/