Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_17_2_a8, author = {Yuriy Yu. Leshchenko and Vitaly I. Sushchansky}, title = {On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field}, journal = {Algebra and discrete mathematics}, pages = {288--297}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/} }
TY - JOUR AU - Yuriy Yu. Leshchenko AU - Vitaly I. Sushchansky TI - On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field JO - Algebra and discrete mathematics PY - 2014 SP - 288 EP - 297 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/ LA - en ID - ADM_2014_17_2_a8 ER -
%0 Journal Article %A Yuriy Yu. Leshchenko %A Vitaly I. Sushchansky %T On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field %J Algebra and discrete mathematics %D 2014 %P 288-297 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/ %G en %F ADM_2014_17_2_a8
Yuriy Yu. Leshchenko; Vitaly I. Sushchansky. On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 288-297. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/
[1] V. Bardakov, M. Neshchadim, Yu. Sosnovsky, “Groups of triangular automorphisms of a free associative algebra and a polynomial algebra”, J. Algebra, 362 (2012), 201–220 | DOI | MR | Zbl
[2] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Philos. Soc., 55 (1959), 224–231 | DOI | MR | Zbl
[3] Zh. Dovhei, “Nilpotency of the group of unitriangular automorphisms of the polynomial ring of two variables over a finite field”, Sci. Bull. of Chernivtsi Univ., Ser. Mathematics, 2:2–3 (2012), 66–69 (in Ukrainian)
[4] Zh. Dovhei, V. Sushchansky, “Unitriangular automorphisms of the two variable polynomial ring over a finite field of characteristic $p>0$”, Mathematical Bulletin of Shevchenko Scientific Society, 9 (2012), 108–123 (in Ukrainian)
[5] H. Liebeck, “Concerning nilpotent wreath products”, Proc. Cambridge Philos. Soc., 58 (1962), 443–451 | DOI | MR | Zbl
[6] J. Rotman, An introduction to the theory of groups, 4th edit., Springer-Verlag, New York, NY, 1994 | MR
[7] Mathematical notes of the Academy of Sciences of the USSR, 11:1 (1972), 41–47 | DOI | MR