On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 288-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group $U\!J_2(\mathbb{F}_q)$ of unitriangular automorphisms of the polynomial ring in two variables over a finite field $\mathbb{F}_q$, $q=p^m$, is studied. We proved that $U\!J_2(\mathbb{F}_q)$ is isomorphic to a standard wreath product of elementary Abelian $p$-groups. Using wreath product representation we proved that the nilpotency class of $U\!J_2(\mathbb{F}_q)$ is $c=m(p-1)+1$ and the $(k+1)$th term of the lower central series of this group coincides with the $(c-k)$th term of its upper central series. Also we showed that $U\!J_n(\mathbb{F}_q)$ is not nilpotent if $n \geq 3$.
Keywords: polynomial ring, unitriangular automorphism, finite field, wreath product, nilpotent group, central series.
@article{ADM_2014_17_2_a8,
     author = {Yuriy Yu. Leshchenko and Vitaly I. Sushchansky},
     title = {On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field},
     journal = {Algebra and discrete mathematics},
     pages = {288--297},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/}
}
TY  - JOUR
AU  - Yuriy Yu. Leshchenko
AU  - Vitaly I. Sushchansky
TI  - On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 288
EP  - 297
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/
LA  - en
ID  - ADM_2014_17_2_a8
ER  - 
%0 Journal Article
%A Yuriy Yu. Leshchenko
%A Vitaly I. Sushchansky
%T On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
%J Algebra and discrete mathematics
%D 2014
%P 288-297
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/
%G en
%F ADM_2014_17_2_a8
Yuriy Yu. Leshchenko; Vitaly I. Sushchansky. On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 288-297. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a8/

[1] V. Bardakov, M. Neshchadim, Yu. Sosnovsky, “Groups of triangular automorphisms of a free associative algebra and a polynomial algebra”, J. Algebra, 362 (2012), 201–220 | DOI | MR | Zbl

[2] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Philos. Soc., 55 (1959), 224–231 | DOI | MR | Zbl

[3] Zh. Dovhei, “Nilpotency of the group of unitriangular automorphisms of the polynomial ring of two variables over a finite field”, Sci. Bull. of Chernivtsi Univ., Ser. Mathematics, 2:2–3 (2012), 66–69 (in Ukrainian)

[4] Zh. Dovhei, V. Sushchansky, “Unitriangular automorphisms of the two variable polynomial ring over a finite field of characteristic $p>0$”, Mathematical Bulletin of Shevchenko Scientific Society, 9 (2012), 108–123 (in Ukrainian)

[5] H. Liebeck, “Concerning nilpotent wreath products”, Proc. Cambridge Philos. Soc., 58 (1962), 443–451 | DOI | MR | Zbl

[6] J. Rotman, An introduction to the theory of groups, 4th edit., Springer-Verlag, New York, NY, 1994 | MR

[7] Mathematical notes of the Academy of Sciences of the USSR, 11:1 (1972), 41–47 | DOI | MR