Subpower Higson corona of a metric space
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 280-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a subpower Higson corona of a metric space. This corona turns out to be an intermediate corona between the Higson corona and sublinear Higson corona. It is proved that the subpower compactification of an unbounded proper metric space contains a topological copy of the Stone-Čech compactification of a countable discrete space. We also provide an example of a map between geodesic spaces that is not asymptotically Lipschitz but that generates a continuous map of the corresponding subpower Higson coronas.
@article{ADM_2014_17_2_a7,
     author = {Jacek Kucab and Mykhailo Zarichnyi},
     title = {Subpower {Higson} corona of a metric space},
     journal = {Algebra and discrete mathematics},
     pages = {280--287},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/}
}
TY  - JOUR
AU  - Jacek Kucab
AU  - Mykhailo Zarichnyi
TI  - Subpower Higson corona of a metric space
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 280
EP  - 287
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/
LA  - en
ID  - ADM_2014_17_2_a7
ER  - 
%0 Journal Article
%A Jacek Kucab
%A Mykhailo Zarichnyi
%T Subpower Higson corona of a metric space
%J Algebra and discrete mathematics
%D 2014
%P 280-287
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/
%G en
%F ADM_2014_17_2_a7
Jacek Kucab; Mykhailo Zarichnyi. Subpower Higson corona of a metric space. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 280-287. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/

[1] J. Roe, Lectures on Coarse Geometry, University Lecture Series, 31, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[2] M. Cencelj, J. Dydak, J. Smrekar, A. Vavpetič, “Sublinear Higson corona and Lipschitz extensions”, Houston J. Math., 37:4 (2011), 1307–1322 | MR | Zbl

[3] A. N. Dranishnikov, “Asymptotic topology”, Russian Mathematical Surveys, 55:6 (2000), 1085–1129 | DOI | MR | Zbl

[4] A. N. Dranishnikov and J. Smith, “On asymptotic Assouad-Nagata dimension”, Topology Appl., 154:4 (2007), 934–952 | DOI | MR | Zbl

[5] A. N. Dranishnikov, J. Keesling, V. V. Uspenskij, “On the Higson corona of uniformly contractible spaces”, Topology, 37:4, July 1998, 791–803 | DOI | MR | Zbl

[6] James Keesling, “The One-Dimensional Cech Cohomology of the Higson Compactification and its Corona”, Topology Proceedings, 19 (1994), 129–148 | MR | Zbl

[7] James Keesling, “Subcontinua of the Higson corona”, Topol. Appl., 80:1-2 (1997), 155–160 | DOI | MR | Zbl

[8] I. V. Protasov, “Binary coronas of balleans”, Algebra Discrete Math., 2003, no. 4, 50–65 | MR | Zbl

[9] I. Protasov, M. Zarichnyi, General Asymptology, Mathematical Studies Monograph Series, 12, VNTL Publishers, Lviv, 2007, 220 pp. | MR | Zbl