Subpower Higson corona of a metric space
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 280-287
Voir la notice de l'article provenant de la source Math-Net.Ru
We define a subpower Higson corona of a metric space. This corona turns out to be an intermediate corona between the Higson corona and sublinear Higson corona. It is proved that the subpower compactification of an unbounded proper metric space contains a topological copy of the Stone-Čech compactification of a countable discrete space. We also provide an example of a map between geodesic spaces that is not asymptotically Lipschitz but that generates a continuous map of the corresponding subpower Higson coronas.
@article{ADM_2014_17_2_a7,
author = {Jacek Kucab and Mykhailo Zarichnyi},
title = {Subpower {Higson} corona of a metric space},
journal = {Algebra and discrete mathematics},
pages = {280--287},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/}
}
Jacek Kucab; Mykhailo Zarichnyi. Subpower Higson corona of a metric space. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 280-287. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a7/