Characterizing semigroups with commutative superextensions
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192
Voir la notice de l'article provenant de la source Math-Net.Ru
We characterize semigroups $X$ whose semigroups of filters $\varphi(X)$, maximal linked systems
$\lambda(X)$, linked upfamilies $N_2(X)$, and upfamilies $\upsilon(X)$ are commutative.
Keywords:
Commutative semigroup, superextension, semigroup of filters, semigroup of linked upfamilies.
@article{ADM_2014_17_2_a1,
author = {Taras Banakh and Volodymyr Gavrylkiv},
title = {Characterizing semigroups with commutative superextensions},
journal = {Algebra and discrete mathematics},
pages = {161--192},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/}
}
TY - JOUR AU - Taras Banakh AU - Volodymyr Gavrylkiv TI - Characterizing semigroups with commutative superextensions JO - Algebra and discrete mathematics PY - 2014 SP - 161 EP - 192 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/ LA - en ID - ADM_2014_17_2_a1 ER -
Taras Banakh; Volodymyr Gavrylkiv. Characterizing semigroups with commutative superextensions. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/