Characterizing semigroups with commutative superextensions
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize semigroups $X$ whose semigroups of filters $\varphi(X)$, maximal linked systems $\lambda(X)$, linked upfamilies $N_2(X)$, and upfamilies $\upsilon(X)$ are commutative.
Keywords: Commutative semigroup, superextension, semigroup of filters, semigroup of linked upfamilies.
@article{ADM_2014_17_2_a1,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Characterizing semigroups with commutative superextensions},
     journal = {Algebra and discrete mathematics},
     pages = {161--192},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Characterizing semigroups with commutative superextensions
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 161
EP  - 192
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/
LA  - en
ID  - ADM_2014_17_2_a1
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Characterizing semigroups with commutative superextensions
%J Algebra and discrete mathematics
%D 2014
%P 161-192
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/
%G en
%F ADM_2014_17_2_a1
Taras Banakh; Volodymyr Gavrylkiv. Characterizing semigroups with commutative superextensions. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/