Characterizing semigroups with commutative superextensions
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize semigroups $X$ whose semigroups of filters $\varphi(X)$, maximal linked systems $\lambda(X)$, linked upfamilies $N_2(X)$, and upfamilies $\upsilon(X)$ are commutative.
Keywords: Commutative semigroup, superextension, semigroup of filters, semigroup of linked upfamilies.
@article{ADM_2014_17_2_a1,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Characterizing semigroups with commutative superextensions},
     journal = {Algebra and discrete mathematics},
     pages = {161--192},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Characterizing semigroups with commutative superextensions
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 161
EP  - 192
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/
LA  - en
ID  - ADM_2014_17_2_a1
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Characterizing semigroups with commutative superextensions
%J Algebra and discrete mathematics
%D 2014
%P 161-192
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/
%G en
%F ADM_2014_17_2_a1
Taras Banakh; Volodymyr Gavrylkiv. Characterizing semigroups with commutative superextensions. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 161-192. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a1/

[1] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups, II: cancelativity and centers”, Algebra Discr. Math., 2008, no. 4, 1–14 | MR | Zbl

[2] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups: minimal left ideals”, Mat. Stud., 31 (2009), 142–148 | MR | Zbl

[3] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of twinic groups”, Dissert. Math., 473 (2010), 74 pp. | DOI | MR | Zbl

[4] T. Banakh, V. Gavrylkiv, “Algebra in superextensions of semilattices”, Algebra Discr. Math., 13:1 (2012), 26–42 | MR | Zbl

[5] T. Banakh, V. Gavrylkiv, “Algebra in superextensions of inverse semigroups”, Algebra Discr. Math., 13:2 (2012), 147–168 | MR | Zbl

[6] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, “Algebra in superextensions of groups, I: zeros and commutativity”, Algebra Discr. Math., 2008, no. 3, 1–29 | MR | Zbl

[7] R. Ellis, Lectures on topological dynamics, 1969, Benjamin, New York | MR | Zbl

[8] V. Gavrylkiv, “The spaces of inclusion hyperspaces over noncompact spaces”, Mat. Stud., 28:1 (2007), 92–110 | MR | Zbl

[9] V. Gavrylkiv, “Right-topological semigroup operations on inclusion hyperspaces”, Mat. Stud., 29:1 (2008), 18–34 | MR | Zbl

[10] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, John Wiley Sons, Inc., New York, 1990 | MR | Zbl

[11] N. Hindman, L. Legette, D. Strauss, “The number of minimal left and minimal right ideals in $\beta S$”, Topology Proc., 39 (2012), 45–68 | MR | Zbl

[12] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin–New York, 1998 | MR | Zbl

[13] J. M. Howie, Fundamentals of semigroup theory, The Clarendon Press, Oxford University Press, New York, 1995 | MR

[14] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Math. Centrum., Amsterdam, 1977 | MR

[15] I. Protasov, Combinatorics of Numbers, VNTL Publ., Lviv, 1997 | MR | Zbl

[16] F. Ramsey, “On a problem of formal logic”, Proc. London Math. Soc., 30 (1930), 264–286 | DOI | MR

[17] A. Verbeek, Superextensions of topological spaces, MC Tract, 41, Amsterdam, 1972 | MR | Zbl