On the subset combinatorics of $G$-spaces
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 98-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and let $X$ be a transitive $G$-space. We classify the subsets of $X$ with respect to a translation invariant ideal $J$ in the Boolean algebra of all subsets of $X$, introduce and apply the relative combinatorical derivations of subsets of $X$. Using the standard action of $G$ on the Stone-Čech compactification $\beta X$ of the discrete space $X$, we characterize the points $p\in\beta X$ isolated in $Gp$ and describe a size of a subset of $X$ in terms of its ultracompanions in $\beta X$. We introduce and characterize scattered and sparse subsets of $X$ from different points of view.
Keywords: $G$-space, relative combinatorial derivation, Stone-Čech compactification, ultracompanion, sparse and scattered subsets.
@article{ADM_2014_17_1_a6,
     author = {Igor Protasov and Sergii Slobodianiuk},
     title = {On the subset combinatorics of $G$-spaces},
     journal = {Algebra and discrete mathematics},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a6/}
}
TY  - JOUR
AU  - Igor Protasov
AU  - Sergii Slobodianiuk
TI  - On the subset combinatorics of $G$-spaces
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 98
EP  - 109
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a6/
LA  - en
ID  - ADM_2014_17_1_a6
ER  - 
%0 Journal Article
%A Igor Protasov
%A Sergii Slobodianiuk
%T On the subset combinatorics of $G$-spaces
%J Algebra and discrete mathematics
%D 2014
%P 98-109
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a6/
%G en
%F ADM_2014_17_1_a6
Igor Protasov; Sergii Slobodianiuk. On the subset combinatorics of $G$-spaces. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a6/

[1] T. Banakh, N. Lyaskovska, “Completeness of translation-invariant ideals in groups”, Ukr. Math. J., 62 (2010), 1022–1031 | MR | Zbl

[2] T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions of groups, preprint, arXiv: http://arxiv.org/abs/1303.4612

[3] T. Banakh, I. Protasov, S. Slobodianiuk, Scattered subsets of groups, preprint, arXiv: http://arxiv.org/abs/1312.6946

[4] T. Banakh, O. Ravsky, S. Slobodianiuk, On partitions of $G$-spaces and $G$-lattices, preprint, arXiv: http://arxiv.org/abs/1303.1427

[5] T. Banakh, I. Zarichnyi, “Characterizing the Cantor bi-cube in asymptotic categories”, Groups, Geometry and Dynamics, 5 (2011), 691–728 | DOI | MR | Zbl

[6] J. Erde, A note on combinatorial derivation, preprint, arXiv: http://arxiv.org/abs/1210.7622

[7] M. Filali, Ie. Lutsenko, I. Protasov, “Boolean group ideals and the ideal structure of $\beta G$”, Math. Stud., 30 (2008), 1–10 | MR

[8] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, 2nd edition, de Gruyter, 2012 | MR | Zbl

[9] Ie. Lutsenko, I. V. Protasov, “Sparse, thin and other subsets of groups”, Intern. J. Algebra Computation, 19 (2009), 491–510 | DOI | MR | Zbl

[10] Ie. Lutsenko, I. V. Protasov, “Relatively thin and sparse subsets of groups”, Ukr. Math. J., 63 (2011), 216–225 | DOI | MR | Zbl

[11] I. V. Protasov, “Selective survey on Subset Combinatorics of Groups”, Ukr. Math. Bull., 7 (2011), 220–257 | MR | Zbl

[12] I. V. Protasov, “The Combinatorial Derivation”, Appl. Gen. Topology, 14:2 (2013), 171–178 | MR | Zbl

[13] I. V. Protasov, “The combinatorial derivation and its inverse mapping”, Central Europ. Math. J., 11 (2013), 2176–2181 | DOI | MR | Zbl

[14] I. V. Protasov, “Sparse and thin metric spaces”, Math. Stud., to appear | MR

[15] I. V. Protasov, S. Slobodianiuk, “Ultracompanions of subsets of groups”, Comment. Math. Univ. Carolin., to appear | MR

[16] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007 | MR | Zbl