Equivalence of matrices over commutative rings
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 12-19
Cet article a éte moissonné depuis la source Math-Net.Ru
We study connections between wildness of the problem of classifying the matrices over an integral domain up to equivalence modulo an ideal and properties of the set of prime elements of the domain.
Keywords:
commutative ring, equivalent matrices modulo an ideal, perfect $(I,J)$-matrix, wildness.
Mots-clés : prime element
Mots-clés : prime element
@article{ADM_2014_17_1_a1,
author = {Vitaliy. M. Bondarenko and Alexander A. Tylyshchak and Myroslav V. Stoika},
title = {Equivalence of matrices over commutative rings},
journal = {Algebra and discrete mathematics},
pages = {12--19},
year = {2014},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a1/}
}
TY - JOUR AU - Vitaliy. M. Bondarenko AU - Alexander A. Tylyshchak AU - Myroslav V. Stoika TI - Equivalence of matrices over commutative rings JO - Algebra and discrete mathematics PY - 2014 SP - 12 EP - 19 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a1/ LA - en ID - ADM_2014_17_1_a1 ER -
Vitaliy. M. Bondarenko; Alexander A. Tylyshchak; Myroslav V. Stoika. Equivalence of matrices over commutative rings. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 12-19. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a1/
[1] Ju. A. Drozd, “Tame and wild matrix problems”, Matrix problems, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1977, 104–114 (in Russian) | MR
[2] Ju. A. Drozd, “Tame and wild matrix problems”, Representations and quadratic forms, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, 39–74 (in Russian) | MR
[3] P. M. Gudivok, “On the equivalence of matrices over commutative rings”, Infinite groups and related algebraic structures, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1993, 431–437 (in Russian) | MR