Rigid, quasi-rigid and matrix rings with $(\overline{\sigma},0)$-multiplication
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring with an endomorphism $\sigma$. We introduce $(\overline{\sigma}, 0)$-multiplication which is a generalization of the simple $ 0$-multiplication. It is proved that for arbitrary positive integers $m\leq n$ and $n\geq 2$, $R[x; \sigma]$ is a reduced ring if and only if $S_{n, m}(R)$ is a ring with $(\overline{\sigma},0)$-multiplication.
Keywords: quasi $\sigma$-rigid rings.
Mots-clés : simple $0$-multiplication
@article{ADM_2014_17_1_a0,
     author = {Cihat Abdio\^{g}lu and Serap \c{S}ahinkaya and Arda K\"OR},
     title = {Rigid, quasi-rigid and matrix rings with $(\overline{\sigma},0)$-multiplication},
     journal = {Algebra and discrete mathematics},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a0/}
}
TY  - JOUR
AU  - Cihat Abdioĝlu
AU  - Serap Şahinkaya
AU  - Arda KÖR
TI  - Rigid, quasi-rigid and matrix rings with $(\overline{\sigma},0)$-multiplication
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 1
EP  - 11
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a0/
LA  - en
ID  - ADM_2014_17_1_a0
ER  - 
%0 Journal Article
%A Cihat Abdioĝlu
%A Serap Şahinkaya
%A Arda KÖR
%T Rigid, quasi-rigid and matrix rings with $(\overline{\sigma},0)$-multiplication
%J Algebra and discrete mathematics
%D 2014
%P 1-11
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a0/
%G en
%F ADM_2014_17_1_a0
Cihat Abdioĝlu; Serap Şahinkaya; Arda KÖR. Rigid, quasi-rigid and matrix rings with $(\overline{\sigma},0)$-multiplication. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a0/

[1] Armendariz, E. P., “A note on extension of Baer and p.p.-rings”, J. Austral.Math Soc., 18 (1974), 470–473 | DOI | MR | Zbl

[2] Başer, M. and Koşan, M. T., “On quasi-Armendariz modules”, Taiwanese J. Mathematics, 12:3 (2008), 573–582 | MR

[3] Koşan, M. T. and Özdin, T., “Quasi $\sigma$-rigid rings”, Int. J. Contemp. Math. Sciences, 27:3 (2008), 1331–1335 | MR

[4] Lee, T. K. and Zhou, Y., “Armendariz rings and reduced rings”, Comm. Algebra, 32:6 (2004), 2287–2299 | DOI | MR | Zbl

[5] Lee, T. K. and Zhou, Y., “Reduced modules, rings, modules, algebras and abelian groups”, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004, 365–377 | MR | Zbl

[6] Wang, W., Puczylowski, E. R.and Li, L., “On Armendariz rings and matrix rings with simple $0$-multiplication”, Comm. Algebra, 36 (2008), 1514–1519 | DOI | MR | Zbl

[7] Yi, Z. and Zhou, Y., “Baer and quasi-Baer properties of group rings”, J. Australian Math. Soc., 83:2 (2007), 285–296 | DOI | MR | Zbl

[8] Hong, C. Y., Kim, N. K. and Kwak, T. K., “On skew armendariz rings”, Comm. Algebra, 31:01 (2003), 103–122 | DOI | MR | Zbl