Form of filters of semisimple modules and direct sums
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 226-232
Cet article a éte moissonné depuis la source Math-Net.Ru
Some collections of submodules of a module defined by certain conditions are studied. A generalization of the notion of radical (preradical) filter is considered. We study the form of filters of semisimple modules and direct sums.
Keywords:
ring, filter.
Mots-clés : module
Mots-clés : module
@article{ADM_2013_16_2_a6,
author = {Yu. Maturin},
title = {Form of filters of semisimple modules and direct sums},
journal = {Algebra and discrete mathematics},
pages = {226--232},
year = {2013},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a6/}
}
Yu. Maturin. Form of filters of semisimple modules and direct sums. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 226-232. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a6/
[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer, Berlin–Heidelberg–New York, 1973 | MR
[2] F. Hausdorff, Set theory, Second edition, Chelsea Publishing Company, New York, 2005 | MR
[3] A. I. Kashu, Radicals and torsions in modules, Stiintca, Chisinau, 1983 (in Russian) | MR
[4] Yu. P. Maturin, “Preradicals and submodules”, Algebra and Discrete Mathematics, 10:1 (2010), 88–96 | MR | Zbl
[5] W. Sierpinski, Cardinal and ordinal numbers, Second edition, PWN, Warsaw, 1965 | MR