On some linear groups, having a big family of $G$-invariant subspaces
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 217-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a field, $A$ a vector space over $F$, $GL(F, A)$ be the group of all automorphisms of the vector space $A$. If $B$ is a subspace of $A$, then denote by $BFG$ the $G$-invariant subspace, generated by $B$. A subspace $B$ is called nearly $G$-invariant, if $dim_F(BFG/B)$ is finite. In this paper we described the situation when every subspace of $A$ is nearly $G$-invariant.
Keywords: Vector space, linear group, $G$-invariant subspace, nearly $G$-invariant subspace.
Mots-clés : module
@article{ADM_2013_16_2_a5,
     author = {L. A. Kurdachenko and A. V. Sadovnichenko},
     title = {On some linear groups, having a big family of $G$-invariant subspaces},
     journal = {Algebra and discrete mathematics},
     pages = {217--225},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - A. V. Sadovnichenko
TI  - On some linear groups, having a big family of $G$-invariant subspaces
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 217
EP  - 225
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/
LA  - en
ID  - ADM_2013_16_2_a5
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A A. V. Sadovnichenko
%T On some linear groups, having a big family of $G$-invariant subspaces
%J Algebra and discrete mathematics
%D 2013
%P 217-225
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/
%G en
%F ADM_2013_16_2_a5
L. A. Kurdachenko; A. V. Sadovnichenko. On some linear groups, having a big family of $G$-invariant subspaces. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 217-225. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/

[1] Dixon J. D., The structure of linear groups, van Nostrand, London, 1971

[2] Dixon M. R., Kurdachenko L. A., Otal J., “Linear groups with bounded action”, Algebra Colloquium, 18:3 (2011), 487–498 | DOI | MR | Zbl

[3] Dixon M. R., Kurdachenko L. A., Otal J., “Linear groups with finite dimensional orbits”, Ischia Group Theory 2010, Proceedings of the conference in Group Theory, World Scientific, 2012, 131–145 | DOI | MR | Zbl

[4] Kegel O. H., Wehrfritz B. A. F., Locally finite groups, North-Holland, Amsterdam, 1973 | MR | Zbl

[5] Kurdachenko L. A., “On some infinite dimensional linear groups”, Note di Matematica, 30:1 (2010), 21–36 | MR

[6] Kurdachenko L. A., Semko N. N., Subbotin I. Ya., Insight into modules over Dedekind domains, Institute of Mathematics, Kiev, 2008 | Zbl

[7] Kurdachenko L. A., Sadovnichenko A. V., Subbotin I. Ya., “On some infinite dimensional linear groups”, Central European Journal of Mathematics, 7:2 (2009), 178–185 | MR

[8] Kurdachenko L. A., Sadovnichenko A. V., Subbotin I. Ya., “Infinite dimensional linear groups with a large family of G-invariant subspaces”, Commentationes Mathematicae Universitatis Carolinae, 51:4 (2010), 551–558 | MR | Zbl

[9] Phillips R., “Finitary linear groups: a survey”, Finite and locally finite groups, NATO ASI ser. C, 471, Kluwer, Dordrecht, 1995, 111–146 | MR | Zbl

[10] Suprunenko D. A., Matrix groups, Nauka, M., 1972 | MR

[11] Wehrfritz B. A. F., Infinite linear groups, Springer, Berlin, 1973 | MR | Zbl