On some linear groups, having a big family of $G$-invariant subspaces
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 217-225
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a field, $A$ a vector space over $F$, $GL(F, A)$ be the group of all automorphisms of the vector space $A$. If $B$ is a subspace of $A$, then denote by $BFG$ the $G$-invariant subspace, generated by $B$. A subspace $B$ is called nearly $G$-invariant, if $dim_F(BFG/B)$ is finite. In this paper we described the situation when every subspace of $A$ is nearly $G$-invariant.
Keywords:
Vector space, linear group, $G$-invariant subspace, nearly $G$-invariant subspace.
Mots-clés : module
Mots-clés : module
@article{ADM_2013_16_2_a5,
author = {L. A. Kurdachenko and A. V. Sadovnichenko},
title = {On some linear groups, having a big family of $G$-invariant subspaces},
journal = {Algebra and discrete mathematics},
pages = {217--225},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/}
}
TY - JOUR AU - L. A. Kurdachenko AU - A. V. Sadovnichenko TI - On some linear groups, having a big family of $G$-invariant subspaces JO - Algebra and discrete mathematics PY - 2013 SP - 217 EP - 225 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/ LA - en ID - ADM_2013_16_2_a5 ER -
L. A. Kurdachenko; A. V. Sadovnichenko. On some linear groups, having a big family of $G$-invariant subspaces. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 217-225. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a5/