Reducibility and irreducibility of monomial matrices over commutative rings
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 171-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a local ring with nonzero Jacobson radical. We study monomial matrices over $R$ of the form $$ \left( \begin{smallmatrix} 0\ldots0^{s_n}\\ t^{s_1}\ldots00\\ \vdots\ddots\vdots\vdots\\ 0\ldots^{s_{n-1}}0\\ \end{smallmatrix} \right), $$ and give a criterion for such matrices to be reducible when $n\leq 6$, $s_1\ldots,s_n\in\{0,1\}$ and the radical is a principal ideal with generator $t$. We also show that the criterion does not hold for $n=7$.
Keywords: irreducible matrix, similarity, local ring, Jacobson radical.
@article{ADM_2013_16_2_a2,
     author = {V. M. Bondarenko and M. Yu. Bortos and R. F. Dinis and A. A. Tylyshchak},
     title = {Reducibility and irreducibility of monomial matrices over commutative rings},
     journal = {Algebra and discrete mathematics},
     pages = {171--187},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/}
}
TY  - JOUR
AU  - V. M. Bondarenko
AU  - M. Yu. Bortos
AU  - R. F. Dinis
AU  - A. A. Tylyshchak
TI  - Reducibility and irreducibility of monomial matrices over commutative rings
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 171
EP  - 187
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/
LA  - en
ID  - ADM_2013_16_2_a2
ER  - 
%0 Journal Article
%A V. M. Bondarenko
%A M. Yu. Bortos
%A R. F. Dinis
%A A. A. Tylyshchak
%T Reducibility and irreducibility of monomial matrices over commutative rings
%J Algebra and discrete mathematics
%D 2013
%P 171-187
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/
%G en
%F ADM_2013_16_2_a2
V. M. Bondarenko; M. Yu. Bortos; R. F. Dinis; A. A. Tylyshchak. Reducibility and irreducibility of monomial matrices over commutative rings. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 171-187. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/

[1] V. M. Bondarenko, “The similarity of matrices over rings of residue classes”, Mathematics collection, Naukova Dumka, Kiev, 1976, 275–277 (in Russian) | MR

[2] V. N. Shevchenko, S. V. Sidorov, “On the similarity of second-order matrices over the ring of integers”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 4, 57–64 (in Russian) | MR | Zbl

[3] A. Pizarro, “Similarity classes of $3\times 3$ matrices over a discrete valuation ring”, Linear Algebra Appl., 54 (1983), 29–51 | DOI | MR | Zbl

[4] N. Avni, U. Onn, A. Prasad, L. Vaserstein, “Similarity classes of $3\times 3$ matrices over a local principal ideal ring”, Comm. Algebra, 37:8 (2009), 2601–2615 | DOI | MR | Zbl

[5] A. Prasad, P. Singla, S. Spallone, Similarity of matrices over local rings of length two, 2012, arXiv: 1212.6157v2

[6] P. M. Gudivok, O. A. Tylyshchak, “On irreducible modular representations of finite $p$-groups over commutative local rings”, Nauk. Visn. Uzhgorod. Univ. Ser. Math., 1998, no. 3, 78–83 (in Ukrainian) | MR | Zbl