Reducibility and irreducibility of monomial matrices over commutative rings
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 171-187
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a local ring with nonzero Jacobson radical.
We study monomial matrices over $R$ of the form
$$
\left(
\begin{smallmatrix}
0\ldots0^{s_n}\\
t^{s_1}\ldots00\\
\vdots\ddots\vdots\vdots\\
0\ldots^{s_{n-1}}0\\
\end{smallmatrix}
\right),
$$
and give a criterion for such matrices to be reducible when $n\leq 6$, $s_1\ldots,s_n\in\{0,1\}$
and the radical is a principal ideal with generator $t$.
We also show that the criterion does not hold for $n=7$.
Keywords:
irreducible matrix, similarity, local ring, Jacobson radical.
@article{ADM_2013_16_2_a2,
author = {V. M. Bondarenko and M. Yu. Bortos and R. F. Dinis and A. A. Tylyshchak},
title = {Reducibility and irreducibility of monomial matrices over commutative rings},
journal = {Algebra and discrete mathematics},
pages = {171--187},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/}
}
TY - JOUR AU - V. M. Bondarenko AU - M. Yu. Bortos AU - R. F. Dinis AU - A. A. Tylyshchak TI - Reducibility and irreducibility of monomial matrices over commutative rings JO - Algebra and discrete mathematics PY - 2013 SP - 171 EP - 187 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/ LA - en ID - ADM_2013_16_2_a2 ER -
%0 Journal Article %A V. M. Bondarenko %A M. Yu. Bortos %A R. F. Dinis %A A. A. Tylyshchak %T Reducibility and irreducibility of monomial matrices over commutative rings %J Algebra and discrete mathematics %D 2013 %P 171-187 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/ %G en %F ADM_2013_16_2_a2
V. M. Bondarenko; M. Yu. Bortos; R. F. Dinis; A. A. Tylyshchak. Reducibility and irreducibility of monomial matrices over commutative rings. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 171-187. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a2/