$(\lambda,\mu)$-fuzzy interior ideals of ordered $\Gamma$-semigroups
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 61-70

Voir la notice de l'article provenant de la source Math-Net.Ru

For all $\lambda,\mu\in [0,1]$ such that $\lambda\mu$, we first introduced the definitions of $(\lambda,\mu)$-fuzzy ideals and $(\lambda,\mu)$-fuzzy interior ideals of an ordered $\Gamma$-semigroup. Then we proved that in regular and in intra-regular ordered semigroups the $(\lambda,\mu)$-fuzzy ideals and the $(\lambda,\mu)$-fuzzy interior ideals coincide. Lastly, we introduced the concept of a $(\lambda,\mu)$-fuzzy simple ordered $\Gamma$-semigroup and characterized the simple ordered $\Gamma$-semigroups in terms of $(\lambda,\mu)$-fuzzy interior ideals.
Keywords: $\Gamma$-semigroup; $(\lambda,\mu)$-fuzzy interior ideal; $(\lambda,\mu)$-fuzzy simple; regular ordered $\Gamma$-semigroup; intra-regular ordered $\Gamma$-semigroup.
@article{ADM_2013_16_1_a6,
     author = {Yuming Feng and P. Corsini},
     title = {$(\lambda,\mu)$-fuzzy interior ideals of ordered $\Gamma$-semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a6/}
}
TY  - JOUR
AU  - Yuming Feng
AU  - P. Corsini
TI  - $(\lambda,\mu)$-fuzzy interior ideals of ordered $\Gamma$-semigroups
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 61
EP  - 70
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a6/
LA  - en
ID  - ADM_2013_16_1_a6
ER  - 
%0 Journal Article
%A Yuming Feng
%A P. Corsini
%T $(\lambda,\mu)$-fuzzy interior ideals of ordered $\Gamma$-semigroups
%J Algebra and discrete mathematics
%D 2013
%P 61-70
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a6/
%G en
%F ADM_2013_16_1_a6
Yuming Feng; P. Corsini. $(\lambda,\mu)$-fuzzy interior ideals of ordered $\Gamma$-semigroups. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a6/