Power graph of finite abelian groups
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group. The power graph $\Gamma_P(G)$ of $G$ is a graph with vertex set $V(\Gamma_P(G)) = G$ and two distinct vertices $x$ and $y$ are adjacent in $\Gamma_P(G)$ if and only if either $x^i=y$ or $y^j=x$, where $2\leq i,j \leq n$. In this paper, we obtain some fundamental characterizations of the power graph. Also, we characterize certain classes of power graphs of finite abelian groups.
Keywords: power graph, planar graph, Eulerian graph, finite group.
@article{ADM_2013_16_1_a4,
     author = {T. Tamizh Chelvam and M. Sattanathan},
     title = {Power graph of finite abelian groups},
     journal = {Algebra and discrete mathematics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/}
}
TY  - JOUR
AU  - T. Tamizh Chelvam
AU  - M. Sattanathan
TI  - Power graph of finite abelian groups
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 33
EP  - 41
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/
LA  - en
ID  - ADM_2013_16_1_a4
ER  - 
%0 Journal Article
%A T. Tamizh Chelvam
%A M. Sattanathan
%T Power graph of finite abelian groups
%J Algebra and discrete mathematics
%D 2013
%P 33-41
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/
%G en
%F ADM_2013_16_1_a4
T. Tamizh Chelvam; M. Sattanathan. Power graph of finite abelian groups. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/

[1] A. Abdollahi, S. Akbari, H. R. Maimani, “Non-Commuting graph of a group”, J. Algebra, 298 (2006), 468–492 | DOI | MR | Zbl

[2] S. Akbari, A. Mohammadian, “On the zero-divisor graph of commutative ring”, J. Algebra, 274:2 (2004), 847–855 | DOI | MR | Zbl

[3] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Elsevier, 1977 | MR

[4] G. Chartrand, P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006

[5] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl

[6] J. A. Gallian, Contemporary Abstract Algebra, Narosa Publishing House, 1999

[7] A. V. Kelarev, S. J. Quinn, “Directed graph and combinatorial properties of semigroups”, J. Algebra, 251 (2002), 16–26 | DOI | MR | Zbl

[8] S. Lakshmivarahan, Jung-Sing Jwo, S. K. Dhall, “Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey”, Parallel Comput., 19 (1993), 361–407 | DOI | MR | Zbl