Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_1_a4, author = {T. Tamizh Chelvam and M. Sattanathan}, title = {Power graph of finite abelian groups}, journal = {Algebra and discrete mathematics}, pages = {33--41}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/} }
T. Tamizh Chelvam; M. Sattanathan. Power graph of finite abelian groups. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a4/
[1] A. Abdollahi, S. Akbari, H. R. Maimani, “Non-Commuting graph of a group”, J. Algebra, 298 (2006), 468–492 | DOI | MR | Zbl
[2] S. Akbari, A. Mohammadian, “On the zero-divisor graph of commutative ring”, J. Algebra, 274:2 (2004), 847–855 | DOI | MR | Zbl
[3] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Elsevier, 1977 | MR
[4] G. Chartrand, P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006
[5] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl
[6] J. A. Gallian, Contemporary Abstract Algebra, Narosa Publishing House, 1999
[7] A. V. Kelarev, S. J. Quinn, “Directed graph and combinatorial properties of semigroups”, J. Algebra, 251 (2002), 16–26 | DOI | MR | Zbl
[8] S. Lakshmivarahan, Jung-Sing Jwo, S. K. Dhall, “Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey”, Parallel Comput., 19 (1993), 361–407 | DOI | MR | Zbl