On modular representations of semigroups $S_p\times T_p$
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 16-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be simple, and let $S_p$ and $T_p$ be the symmetric group and the symmetric semigroup of degree $p$, respectively. The theorem of this paper says that the direct product $S_p\times T_p$ are of wild representation type over any field of characteristic $p$. The main case is $p=2$.
Keywords: wild, symmetric semigroup, modular representations.
Mots-clés : matrix, transformation
@article{ADM_2013_16_1_a2,
     author = {V. M. Bondarenko and E. M. Kostyshyn},
     title = {On modular representations of semigroups $S_p\times T_p$},
     journal = {Algebra and discrete mathematics},
     pages = {16--19},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a2/}
}
TY  - JOUR
AU  - V. M. Bondarenko
AU  - E. M. Kostyshyn
TI  - On modular representations of semigroups $S_p\times T_p$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 16
EP  - 19
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a2/
LA  - en
ID  - ADM_2013_16_1_a2
ER  - 
%0 Journal Article
%A V. M. Bondarenko
%A E. M. Kostyshyn
%T On modular representations of semigroups $S_p\times T_p$
%J Algebra and discrete mathematics
%D 2013
%P 16-19
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a2/
%G en
%F ADM_2013_16_1_a2
V. M. Bondarenko; E. M. Kostyshyn. On modular representations of semigroups $S_p\times T_p$. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 16-19. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a2/

[1] Yu. A. Drozd, “Tame and wild matrix problems”, Lecture Notes in Math., 832, 1980, 242–258 | DOI | MR | Zbl

[2] J. Soviet Math., 20 (1982), 2515–2528 | DOI | MR | Zbl

[3] Math. USSR-Izv., 7 (1973), 749–792 | DOI | MR | Zbl

[4] P. Donovan, M.-R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, 5, Carleton University, Ottawa, Ont., 1973, 83 pp. | MR | Zbl

[5] V. M. Bondarenko, E. M. Kostyshyn, “Modular representations of the semigroup $T_2$”, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. Inform., 22 (2011), 26–34 (in Ukrainian) | Zbl