The monoid of endomorphisms of disconnected hypergraphs
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 134-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the monoid of endomorphisms of an arbitrary disconnected hypergraph is isomorphic to a wreath product of a transformation semigroup with a certain small category. For disconnected hypergraphs we also study the structure of the monoid of strong endomorphisms and the group of automorphisms.
Keywords: monoid of endomorphisms, monoid of strong endomorphisms, group of automorphisms, hypergraph, wreath product.
@article{ADM_2013_16_1_a14,
     author = {Yuriy V. Zhuchok},
     title = {The monoid of endomorphisms of disconnected hypergraphs},
     journal = {Algebra and discrete mathematics},
     pages = {134--150},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a14/}
}
TY  - JOUR
AU  - Yuriy V. Zhuchok
TI  - The monoid of endomorphisms of disconnected hypergraphs
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 134
EP  - 150
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a14/
LA  - en
ID  - ADM_2013_16_1_a14
ER  - 
%0 Journal Article
%A Yuriy V. Zhuchok
%T The monoid of endomorphisms of disconnected hypergraphs
%J Algebra and discrete mathematics
%D 2013
%P 134-150
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a14/
%G en
%F ADM_2013_16_1_a14
Yuriy V. Zhuchok. The monoid of endomorphisms of disconnected hypergraphs. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 134-150. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a14/

[1] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI | MR | Zbl

[2] Zykov A. A., “Hypergraphs”, Uspehi mat. nauk, 29:6 (180) (1974), 89–154 (In Russian) | MR | Zbl

[3] Fan S. H., “Generalized symmetry of graphs”, Electronic Notes in Discrete Mathematics, 23 (2005), 51–60 | DOI | MR | Zbl

[4] Kelarev A., Ryan J., Yearwood J., “Cayley graphs as classifiers for data mining: The influence of asymmetries”, Discrete Math., 309:17 (2009), 5360–5369 | DOI | MR | Zbl

[5] Araujo J., Konieczny J., “Dense relations are determined by their endomorphisms monoids”, Semigroup Forum, 70 (2005), 302–306 | DOI | MR | Zbl

[6] Vazhenin Y. M., “On elementary definability and elementary characterizability of classes of reflexive graphs”, Izvestiya vysh. ucheb. zavedeniy. Matematika, 1972, no. 7, 3–11 (in Russian) | MR

[7] Schneperman L. B., “Endomorphism semigroups of quasiordered sets”, Uchenye zapiski LGPU imeni A. I. Gertsena, 238 (1962), 21–37 (In Russian) | MR

[8] Li W. M., “Green's relations on the strong endomorphism monoid of a graph”, Semigroup Forum, 47 (1993), 209–214 | DOI | MR

[9] Meksawang J., Panma S., Knauer U., “Characterization of finite simple semigroup digraphs”, Algebra and Discrete Math., 12:1 (2011), 53–68 | MR | Zbl

[10] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter exposition in math., 29, Berlin, 2000 | MR | Zbl

[11] Zhuchok Y. V., “Endomorphisms of equivalence relations”, Bulletin of Taras Schevchenko National University of Kyiv, Series: Physics and Mathematics, 3 (2007), 22–26 (in Ukrainian) | Zbl

[12] Zhuchok Y. V., “Endomorphism semigroups of 2-nilpotent binary relations”, Fundamentalnaya i prikladnaya matematika, 14:6 (2008), 75–83 (In Russian) | MR

[13] Hvorostuhina E. V., “On homomorhisms of endomorphism semigroups of hypergraphs”, Izvestiya Saratovskogo universiteta, 9:3 (2009), 71–75 (In Russian)

[14] Fleischer V., “On wreath product of monoids with categories”, Prossed. Acad. Sciences of Estonskoy SSR, 35 (1986), 237–243 (in Russian) | MR | Zbl

[15] Fleischer V., Knauer U., “Endomorphism monoids of acts are wreath products of monoids with small categories”, Semigroups — Theory and Applications, Lecture Notes in Mathematics, 1320, 1988, 84–96 | DOI | MR | Zbl

[16] Zhuchok Y. V., “Endomorphism semigroups of some free products”, Fundamentalnaya i prikladnaya matematika, 17:3 (2011/2012), 51–60 (in Russian) | MR

[17] Knauer U., Nieporte M., “Endomorphisms of graphs. I: The monoid of strong endomorphisms”, Arch. Math., 52 (1989), 607–614 | DOI | MR | Zbl

[18] Bondar E. O., “Strong endomorphisms of infinite graphs and hypergraphs”, Materials of XIV International Kravchuk Conference, Kyiv, 2012, v. II, 10

[19] Wilkeit E., “Graphs whis a regular endomorphism monoid”, Arch. Math., 66 (1996), 344–352 | DOI | MR | Zbl

[20] Fan S. H., “Graphs whose strong endomorphism monoids are regular”, Arch. Math., 73 (1999), 419–422 | DOI | MR

[21] Sushchansky V. I., Sikora V. S., Operations on groups of permutations, Ruta, Chernivtsi, 2003, 255 pp. (In Ukrainian)

[22] Kargapolov M. I., Merzlyakov Yu. I., Fundamentals of group theory, Nauka, M., 1977, 240 pp. (In Russian) | MR | Zbl