On one class of partition polynomials
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 127-133
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider relations between one class of partition polynomials, parafunctions of triangular matrices (tables), and linear recurrence relations.
Keywords:
parafunctional triangular matrices.
Mots-clés : polynomials partitions
Mots-clés : polynomials partitions
@article{ADM_2013_16_1_a13,
author = {R. Zatorsky and S. Stefluk},
title = {On one class of partition polynomials},
journal = {Algebra and discrete mathematics},
pages = {127--133},
year = {2013},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a13/}
}
R. Zatorsky; S. Stefluk. On one class of partition polynomials. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 127-133. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a13/
[1] Bell E. T., “Partition polynomials”, Ann. Math., 29 (1927), 38–46 | DOI | MR | Zbl
[2] Fine N. J., Sums over partitions, Report of the Institute in the Theory of Numbers, Boulder, 1959, 86–94
[3] Riordan J., Combinatorial identities, Translated from the English by A. E. Zhukov, Nauka, M., 1982, 256 pp. (Russian) | MR | Zbl
[4] Riordan J., An Introduction to Combinatorial Analysis, Wiley, New York, 1958 | MR | Zbl
[5] Zatorsky R. A., Triangular matrix calculus and its application, Simyk, Ivano-Frankivs'k, 2010, 508 pp. (in Ukrainian)
[6] Zatorsky R. A., “Theory of paradeterminants and its applications”, Algebra and Discrete Mathematics, 2007, no. 1, 109–138 | MR | Zbl