The total torsion element graph of semimodules over commutative semirings
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and investigate the total torsion element graph of semimodules over a commutative semiring with non-zero identity. The main purpose of this paper is to extend the definition and results given in [2] to more general semimodule case.
Keywords: Semiring, $k$-subsemimodules, $Q_{M}$-subsemimodules.
Mots-clés : Torsion element graph
@article{ADM_2013_16_1_a1,
     author = {S. Ebrahimi Atani and F. Esmaeili Khalil Saraei},
     title = {The total torsion element graph of semimodules over commutative semirings},
     journal = {Algebra and discrete mathematics},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a1/}
}
TY  - JOUR
AU  - S. Ebrahimi Atani
AU  - F. Esmaeili Khalil Saraei
TI  - The total torsion element graph of semimodules over commutative semirings
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 1
EP  - 15
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a1/
LA  - en
ID  - ADM_2013_16_1_a1
ER  - 
%0 Journal Article
%A S. Ebrahimi Atani
%A F. Esmaeili Khalil Saraei
%T The total torsion element graph of semimodules over commutative semirings
%J Algebra and discrete mathematics
%D 2013
%P 1-15
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a1/
%G en
%F ADM_2013_16_1_a1
S. Ebrahimi Atani; F. Esmaeili Khalil Saraei. The total torsion element graph of semimodules over commutative semirings. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a1/

[1] D. D. Anderson, M. Naseer, “Beck's coloring of a commutative ring”, J. Algebra, 159 (1993), 500–514 | DOI | MR | Zbl

[2] D. F. Anderson, A. Badawi, “The total graph of a commutative ring”, J. Algebra, 320 (2008), 2706–2719 | DOI | MR | Zbl

[3] D. F. Anderson, P. F. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 437–447 | DOI | MR

[4] D. F. Anderson, M. C. Axtell, J. A. Stickles, “Zero-divisor graphs in commutative rings”, Commutative Algebra, Noetherian and non-Noetherian Perspectives, eds. M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson, Springer-Verlag, New York, 2011, 23–45 | MR | Zbl

[5] P. J. Allen, “A fundamental theorem of homomorphisms for semirings”, Proc. Amer. Math. Soc., 21 (1969), 412–416 | DOI | MR | Zbl

[6] I. Beck, “Coloring of a commutative ring”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[7] J. N. Chaudhari, D. R. Bonde, “On partitioning and subtractive subsemimodules of semimodules over semirings”, Kyungpook Math. J., 50 (2010), 329–336 | DOI | MR | Zbl

[8] R. Ebrahimi Atani, S. Ebrahimi Atani, “On subsemimodules of semimodules”, Bul. Acad. Stiinte Repub. Mold. Mat., 2010, no. 2 (63), 20–30 | MR | Zbl

[9] S. Ebrahimi Atani, “The zero-divisor graph with respect to ideals of a commutative semiring”, Glasnik Math., 43 (2008), 309–320 | DOI | MR | Zbl

[10] S. Ebrahimi Atani, “An ideal-based zero-divisor graph of a commutative semiring”, Glasnik Math., 44:1 (2009), 141–153 | DOI | MR | Zbl

[11] S. Ebrahimi Atani, R. Ebrahimi Atani, “Some remarks on partitioning semirings”, An. St. Univ. Ovidius Constanta, 18:1 (2010), 49–62 | MR | Zbl

[12] S. Ebrahimi Atani, S. Habibi, “The total torsion element graph of a module over a commutative ring”, An. St. Univ. Ovidius Constanta, 19:1 (2011), 23–34 | MR | Zbl

[13] J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow, UK, 1992 | MR | Zbl

[14] J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR

[15] S. B. Mulay, “Cycles and symmetries of zero-divisors”, Comm. Algebra, 30:7 (2002), 3533–3558 | DOI | MR | Zbl