Mots-clés : Besicovitch space
@article{ADM_2013_15_2_a7,
author = {B. Oliynyk},
title = {The diagonal limits of {Hamming} spaces},
journal = {Algebra and discrete mathematics},
pages = {229--236},
year = {2013},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/}
}
B. Oliynyk. The diagonal limits of Hamming spaces. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 229-236. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/
[1] P. J. Cameron, S. Tarzi, “Limits of cubes”, Topology and its Applications, 155:14 (2008), 1454–1461 | DOI | MR | Zbl
[2] F. Blanchard, E. Formenti, P. Kurka, “Cellular automata in the Cantor, Besicovitch, and Weyl topological spaces”, Complex Systems, 11:2 (1997), 107–123 | MR | Zbl
[3] Funct. Anal. Appl., 45:3 (2011), 173–186 | DOI | DOI | MR | Zbl
[4] St. Petersburg Math. J., 6:4 (1995), 705–761 | MR | Zbl
[5] B. V. Oliynyk, V. I. Sushchanskii, “The isometry groups of the Hamming spaces of periodic sequences”, Siberian Mathematical Journal, 54:1 (2013), 124–136 | DOI | MR | Zbl
[6] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231, 2000, 128–203 (Russian) | MR | Zbl