The diagonal limits of Hamming spaces
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 229-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuum family of subspaces of the Besicovitch–Hamming space on some alphabet $B$, naturally parametrized by supernatural numbers. Every subspace is defined as a diagonal limit of finite Hamming spaces on the alphabet $B$. We present a convenient representation of these subspaces. Using this representation we show that the completion of each of these subspace coincides with the completion of the space of all periodic sequences on the alphabet $B$. Then we give answers on two questions formulated in [1].
Keywords: Hamming space, diagonal limit, supernatural number, rooted tree, Bernoulli measure.
Mots-clés : Besicovitch space
@article{ADM_2013_15_2_a7,
     author = {B. Oliynyk},
     title = {The diagonal limits of {Hamming} spaces},
     journal = {Algebra and discrete mathematics},
     pages = {229--236},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/}
}
TY  - JOUR
AU  - B. Oliynyk
TI  - The diagonal limits of Hamming spaces
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 229
EP  - 236
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/
LA  - en
ID  - ADM_2013_15_2_a7
ER  - 
%0 Journal Article
%A B. Oliynyk
%T The diagonal limits of Hamming spaces
%J Algebra and discrete mathematics
%D 2013
%P 229-236
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/
%G en
%F ADM_2013_15_2_a7
B. Oliynyk. The diagonal limits of Hamming spaces. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 229-236. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a7/

[1] P. J. Cameron, S. Tarzi, “Limits of cubes”, Topology and its Applications, 155:14 (2008), 1454–1461 | DOI | MR | Zbl

[2] F. Blanchard, E. Formenti, P. Kurka, “Cellular automata in the Cantor, Besicovitch, and Weyl topological spaces”, Complex Systems, 11:2 (1997), 107–123 | MR | Zbl

[3] Funct. Anal. Appl., 45:3 (2011), 173–186 | DOI | DOI | MR | Zbl

[4] St. Petersburg Math. J., 6:4 (1995), 705–761 | MR | Zbl

[5] B. V. Oliynyk, V. I. Sushchanskii, “The isometry groups of the Hamming spaces of periodic sequences”, Siberian Mathematical Journal, 54:1 (2013), 124–136 | DOI | MR | Zbl

[6] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231, 2000, 128–203 (Russian) | MR | Zbl