Free $(\ell r, rr)$-dibands
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 295-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that varieties of $(\ell r, rr)$-dibands and $(\ell n, rn)$-dibands coincide and describe the structure of free $(\ell r, rr)$-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimonoids give an example of a semiretraction.
Keywords: left (right) regular band, rr)$-diband, diband of subdimonoids, dimonoid, semigroup.
Mots-clés : $(\ell r
@article{ADM_2013_15_2_a11,
     author = {A. V. Zhuchok},
     title = {Free $(\ell r, rr)$-dibands},
     journal = {Algebra and discrete mathematics},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a11/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Free $(\ell r, rr)$-dibands
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 295
EP  - 304
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a11/
LA  - en
ID  - ADM_2013_15_2_a11
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Free $(\ell r, rr)$-dibands
%J Algebra and discrete mathematics
%D 2013
%P 295-304
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a11/
%G en
%F ADM_2013_15_2_a11
A. V. Zhuchok. Free $(\ell r, rr)$-dibands. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 295-304. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a11/

[1] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 2 (2003), 169–183 | DOI | MR | Zbl

[3] V. M. Usenko, “Semiretractions of monoids”, Proc. Inst. Applied Math. and Mech., 5 (2000), 155–164 (in Ukrainian) | MR | Zbl

[4] A. V. Zhuchok, “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl

[5] A. V. Zhuchok, “Free commutative dimonoids”, Algebra and Discrete Math., 9:1 (2010), 109–119 | MR

[6] A. V. Zhuchok, “Free rectangular dibands and free dimonoids”, Algebra and Discrete Math., 11:2 (2011), 92–111 | MR | Zbl

[7] A. V. Zhuchok, “Free normal dibands”, Algebra and Discrete Math., 12:2 (2011), 112–127 | MR | Zbl

[8] A. V. Zhuchok, “Semiretractions of dimonoids”, Proc. Inst. Applied Math. and Mech., 17 (2008), 42–50 (in Ukrainian) | MR | Zbl

[9] A. V. Zhuchok, “Semiretractions of free monoids”, Proc. Inst. Applied Math. and Mech., 11 (2005), 81–88 (in Ukrainian) | MR

[10] A. V. Zhuchok, “Dibands of subdimonoids”, Mat. Stud., 33:2 (2010), 120–124 | MR | Zbl

[11] A. V. Zhuchok, “Free dimonoids”, Ukr. Math. J., 63:2 (2011), 196–208 | DOI | MR | Zbl

[12] A. V. Zhuchok, “Semilattices of subdimonoids”, Asian-Eur. J. Math., 4:2 (2011), 359–371 | DOI | MR | Zbl