On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 287-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relation between completeness and $\mathrm{H}$-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not $\mathrm{H}$-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be $\mathrm{H}$-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} $X$ is $\mathrm{H}$-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain $L \subseteq X$, $ \bigvee L \in \mathrm{cl} {\mathop{\downarrow} } L$ and $ \bigwedge L \in \mathrm{cl} {\mathop{\uparrow} } L$. This extends a result of Gutik, Pagon, and Repovš [GPR].
Keywords: $\mathrm{H}$-closed, directed complete.
Mots-clés : pospace
@article{ADM_2013_15_2_a10,
     author = {T. Yokoyama},
     title = {On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains},
     journal = {Algebra and discrete mathematics},
     pages = {287--294},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/}
}
TY  - JOUR
AU  - T. Yokoyama
TI  - On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 287
EP  - 294
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/
LA  - en
ID  - ADM_2013_15_2_a10
ER  - 
%0 Journal Article
%A T. Yokoyama
%T On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains
%J Algebra and discrete mathematics
%D 2013
%P 287-294
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/
%G en
%F ADM_2013_15_2_a10
T. Yokoyama. On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 287-294. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/

[1] O. Gutik, D. Pagon, D. Repovš, “On Chains in H-Closed Topological Pospaces”, Order, 27 (2010), 69–81 | DOI | MR | Zbl

[2] O. Gutik, D. Repovš, “On linearly ordered H-closed topological semilattices”, Semigroup Forum, 77 (2008), 474–481 | DOI | MR | Zbl

[3] L. E. Ward (Jr.), “Partially ordered topological spaces”, Proc. Amer. Math. Soc., 5:1 (1954), 144–161 | DOI | MR