On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 287-294
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the relation between completeness and $\mathrm{H}$-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not $\mathrm{H}$-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be $\mathrm{H}$-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} $X$ is $\mathrm{H}$-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain $L \subseteq X$, $ \bigvee L \in \mathrm{cl} {\mathop{\downarrow} } L$ and $ \bigwedge L \in \mathrm{cl} {\mathop{\uparrow} } L$. This extends a result of Gutik, Pagon, and Repovš [GPR].
Keywords:
$\mathrm{H}$-closed, directed complete.
Mots-clés : pospace
Mots-clés : pospace
@article{ADM_2013_15_2_a10,
author = {T. Yokoyama},
title = {On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains},
journal = {Algebra and discrete mathematics},
pages = {287--294},
year = {2013},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/}
}
TY - JOUR
AU - T. Yokoyama
TI - On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains
JO - Algebra and discrete mathematics
PY - 2013
SP - 287
EP - 294
VL - 15
IS - 2
UR - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/
LA - en
ID - ADM_2013_15_2_a10
ER -
T. Yokoyama. On the relation between completeness and $\mathrm{H}$-closedness of pospaces without infinite antichains. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 287-294. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a10/
[1] O. Gutik, D. Pagon, D. Repovš, “On Chains in H-Closed Topological Pospaces”, Order, 27 (2010), 69–81 | DOI | MR | Zbl
[2] O. Gutik, D. Repovš, “On linearly ordered H-closed topological semilattices”, Semigroup Forum, 77 (2008), 474–481 | DOI | MR | Zbl
[3] L. E. Ward (Jr.), “Partially ordered topological spaces”, Proc. Amer. Math. Soc., 5:1 (1954), 144–161 | DOI | MR