On elementary domains of partial projective representations of groups
Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 63-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the finite groups containing only elementary domains of factor sets of partial projective representations. A condition for a finite subset $A$ of a group $G,$ which contains the unity of the group, to induce an elementary partial representation of $G$ whose (idempotent) factor set is total is given. Finally, we characterize the elementary partial representation of abelian groups of degrees $\le 4$ with total factor set.
Keywords: elementary partial representation, partial projective representation, elementary domain, total factor set.
@article{ADM_2013_15_1_a6,
     author = {H. Pinedo},
     title = {On elementary domains of partial projective representations of groups},
     journal = {Algebra and discrete mathematics},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a6/}
}
TY  - JOUR
AU  - H. Pinedo
TI  - On elementary domains of partial projective representations of groups
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 63
EP  - 82
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a6/
LA  - en
ID  - ADM_2013_15_1_a6
ER  - 
%0 Journal Article
%A H. Pinedo
%T On elementary domains of partial projective representations of groups
%J Algebra and discrete mathematics
%D 2013
%P 63-82
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a6/
%G en
%F ADM_2013_15_1_a6
H. Pinedo. On elementary domains of partial projective representations of groups. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 63-82. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a6/

[1] M. Dokuchaev, R. Exel, P. Piccione, “Partial representations and partial group algebras”, J. Algebra, 226:1 (2000), 505–532 | DOI | MR | Zbl

[2] M. Dokuchaev, B. Novikov, “Partial projective representations and partial actions”, J. Pure Appl. Algebra, 214 (2010), 251–268 | DOI | MR | Zbl

[3] M. Dokuchaev, B. Novikov, “Partial projective representations and partial actions, II”, J. Pure Appl. Algebra, 216 (2011), 438–455 | DOI | MR

[4] M. Dokuchaev, B. Novikov, H. Pinedo, The Partial Schur Multiplier of a Group, Preprint | MR

[5] M. Dokuchaev, C. Polcino Milies, “Isomorphisms of partial group rings”, Glasg. Math. J., 46:1 (2004), 161–168 | DOI | MR | Zbl

[6] M. Dokuchaev, N. Zhukavets, “On finite degree partial representations of groups”, J. Algebra, 274:1 (2004), 309–334 | DOI | MR | Zbl

[7] R. Exel, “Partial actions of groups and actions of inverse semigroups”, Proc. Am. Math. Soc., 126:12 (1998), 3481–3494 | DOI | MR | Zbl

[8] J. Kellendonk, M. V. Lawson, “Partial actions of groups”, Internat. J. Algebra Comput., 14:1 (2004), 87–114 | DOI | MR | Zbl

[9] M. B. Szendrei, “A note on Birget–Rhodes expansion of groups”, J. Pure and Appl. Algebra, 58 (1989), 93–99 | DOI | MR | Zbl