On one class of semiperfect semidistributive rings
Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 19-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the Artinian semidistributive rings.
Keywords: $Q$-symmetric ring; semiperfect ring; semidistributive module; quiver of semiperfect ring.
@article{ADM_2013_15_1_a2,
     author = {M. Kasyanuk},
     title = {On one class of semiperfect semidistributive rings},
     journal = {Algebra and discrete mathematics},
     pages = {19--22},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a2/}
}
TY  - JOUR
AU  - M. Kasyanuk
TI  - On one class of semiperfect semidistributive rings
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 19
EP  - 22
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a2/
LA  - en
ID  - ADM_2013_15_1_a2
ER  - 
%0 Journal Article
%A M. Kasyanuk
%T On one class of semiperfect semidistributive rings
%J Algebra and discrete mathematics
%D 2013
%P 19-22
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a2/
%G en
%F ADM_2013_15_1_a2
M. Kasyanuk. On one class of semiperfect semidistributive rings. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 19-22. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a2/

[1] Michiel Hazewinkel, Nadya Gubareni, V. V. Kirichenko, Algebras, Rings and Modules, v. 1, Springer, Netherlands, 2007, 343–353

[2] V. V. Kirichenko, M. A. Khibina, “Semi-perfect semi-distributive rings”, Institute Groups and Related Algebraik Topics, Institute of Mathematics NAS Ukraine, 1993, 457–480 | MR | Zbl